GnuCOBOL Programmer’s Guide

For Version 3.0 rcl [03May2018]

Gary L. Cutler (cutlergl@gmail.com).
For updates Vincent B. Coen (vbcoen@gmail.com).

mailto:cutlergl@gmail.com
mailto:vbcoen@gmail.com

This manual documents GnuCOBOL 3.0 rcl, 03May2018 build.

Document Copyright 2009-2014 Gary L. Cutler, FSF (Free Software Foundation).
Updates: Copyright 2014-2018 Vincent B. Coen, Gary L. Cutler & FSF.

The authors and copyright holders of the Cobol programming language itself used
herein:

FLOW-MATIC (trademark for Sperry Rand Corporation) Programming for the
Univac(R) I & II. Data Automation Systems copyrighted 1958, 1959, by Sperry
Rand Corporation; IBM commercial translator form F28-8013, copyrighted 1959 by
IBM; FACT DSI27A5260-2760, copyrighted 1960 by Minneapolis-Honeywell, have
specifically authorised the use of this material in whole or in part of the COBOL
specifications. Such authorisation extends to the reproduction & use of COBOL
specifications in programming manuals or similar publications.

Permission is granted to copy, distribute and/or modify this document under the
terms of the GNU Free Documentation License [FDL|, Version 1.3 or any later
version published by the Free Software Foundation; with Invariant Section ”Intro-
duction”, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is
included in the section entitled "GNU Free Documentation License".

GnuCOBOL 3.0 rcl [03May2018] Programmer’s Guide i
Table of Contents

Amendment Changes for Programmers Guide................... 1

1. Introduction........ 3

1.1. Additional Reference SOUICESot e 3

1.2. Introducing COBOL. e 3

1.2.1. Why YOU Should Learn COBOL 4

1.2.2. Programmer Productivity....... ..o 6

1.3. So What is GnuCOBOLT? 7

2. Cobol Fundamentals................................ .. 9

2.1. The COBOL Language - The Basicscooiiiiiii e 9

2.1.1. Language Reserved Words e 9

2.1.2. User-Defined WOordsot e 9

2.1.3. Case Insensitivityo 10

2.1.4. Readability of Programsco i e 10

2.1.5. Divisions Organize Programs 13

2.1.6. COPYDOOKS . . oottt 13

2.1.7. Structured Data 13

2. L8 FHlES - ettt 13

2.1.9. Table Handlingcoouuiii e 17

2.1.10. Sorting and Merging Datao 18

2.1.11. String Manipulation Features........... ... 18

2.1.12. Screen Formatting Features......... ... i 20

2.1.12.1. A Sample SCIreeIN . .ottt et e 21

2.1.12.2. Color Palette and Video Attributes 21

2.1.13. Report Writer Features........ ..o 23

2.1.14. Data Initialization. e 24

2.1.15. Syntax Diagram Conventionseiiiiiiiniiteniiieanneen.. 25

2.1.16. Format of Program Source Lines........... ..o, 27

2.1.17. Program SEIUCHULEttt ettt e e e e et 30

2.1.18. COMIMENTS . . .t e ettt ettt e e e et e e e e e 32

2.1.19. Lterals 33

2.1.19.1. Numeric Literals.........o o e 33

2.1.19.2. Alphanumeric Literalso i 33

2.1.19.3. Figurative Constantsoiuriieiite i, 35

2.1.20. Punctuation. e 36

2.1.21. Interfacing to Other Environments............ i ... 36

2.2. The COBOL Language - Advanced Techniques.coiiiiiiiiiieniaan... 38

2.2.1. Table References e e 38

2.2.2. Qualification of Data Names...... ... i 39

2.2.3. Reference Modiflers.t e 40

2.2.4. Arithmetic EXPressions e 42

2.2.5. Conditional EXPressions 45

2.2.5.1. Condition Namesoot e e 45

2.2.5.2. Class Conditionsutt et e e e e 46

2.2.5.3. Sign Conditions.o.utit i 48

31 May 2018 Contents

ii GnuCOBOL 3.0 rcl [03May2018] Programmer’s Guide
2.2.5.4. Switch-Status Conditionsttt 49
2.2.5.5. Relation Conditions.ttt e 50
2.2.5.6. Combined Conditionsouituniiie 52
2.2.5.7. Negated Conditions.ot e 53
2.2.6. Use of Periods 54
2.2.7. Use of VERB/END-VERB Constructsouuuiiiiiiiiiiiiiiiiiiiinn. 56
2.2.8. Concurrent Access to Files. ... 58
2.2.8.1. File Sharing 58
2.2.8.2. Record LocKing 60

3. CDF - Compiler Directing Facility 63

3.1. >>CALL-CONVENTION . . .o 64
3.2, COPY o 65
3.3. REPLACE . ..o 67
3.4, >>DEFINE . .. 70
3.0, O I 71
3.6, O ST . 73
3.7. >O5SOURCE . oo 74
3.8, OO U RN o 75
3.0, OO 76
3.10. >>DIS P LAY o 77
B L. >OPAGE .. 78
3.12. DOLISTING . oo 79
3.13. >>LEAP-SECONDS . ..o 80
.14, F DITECEIVES o oo 81
4. IDENTIFICATION DIVISION 83
5. ENVIRONMENT DIVISION 85
5.1. CONFIGURATION SECTION 86
5.1.1. SOURCE-COMPUTER 87
5.1.2. OBJECT-COMPUTER.t 88
5.1.3. SPECIAL-NAMES . .. 90
5.1.3.1. Alphabet-Name-Clauseot e 94
5.1.3.2. Class-Definition-Clauset e i 96
5.1.3.3. Switch-Definition-Clause ot 97
5.1.3.4. Symbolic-Characters-Clause.t 98
5.1.4. REPOSITORY ... it i 99
5.2. INPUT-OUTPUT SECTION ... o e 100
5.2. 1. SELEC T .. 101
5.2.1.1. ORGANIZATION SEQUENTIALo 106
5.2.1.2. ORGANIZATION LINE SEQUENTIAL 108
5.2.1.3. ORGANIZATION RELATIVE. 110
5.2.1.4. ORGANIZATION INDEXEDot e 112

5.2.2. SAME RECORD AREAo e 114
5.2.3. MULTIPLE FILE e 115

Contents 31 May 2018

GnuCOBOL 3.0 rcl [03May2018] Programmer’s Guide iii

6. DATA DIVISION, 117
6.1. Data Definition Principles........ ..o e 118
6.2. FILE SECTION ... e e e e 120

6.2.1. File/Sort-Descriptiono 121
6.2.2. FILE-SECTION-Data-Itemo 124
6.3. WORKING-STORAGE SECTION e 126
6.4. LOCAL-STORAGE SECTION e e 128
6.5. LINKAGE SECTION e e 130
6.6. REPORT SECTION e e 132
6.6.1. Report Group Definitions. e 136
6.6.2. REPORT SECTION Data Items.............ooi ... 138
6.7. SCREEN SECTION e e 140
6.8. Special Data Ttems e 142
6.8.1. 01-Level Constantsuuuet e e e e 142
6.8.2. 66-Level Data Ttems e 145
6.8.3. T7-Level Data Itemst e 146
6.8.4. 78-Level Data Itemsottt e 147
6.8.5. 88-Level Data Itemsot e 148
6.9. Data Description ClauSes.ooiiiii e 149
6.9.1. ANY LENGTH ... 149
6.9.2. AU T O .. 150
6.9.3. AUTO-SKIPot e e e e 151
6.9.4. AUTOTERMINATE ... o e 152
6.9.5. BACKGROUND-COLOR 153
6.9.6. BASE D ... 154
6.9.7. BEE P 155
6.9.8. BELL ... 156
6.9.9. BLANK ... o 157
6.9.10. BLANK WHEN ZERO e 158
6.9. 11, BLINK 159
6.9.12. COLUMN i e e e e 160
6.9.13. CONS T AN T ... e e e e 162
6.9.14. EMPTY-CHECK e e 163
6.9.15. ERASE ... 164
6.9.16. EXTERN AL 165
6.9.17. FALSE ... 166
6.9.18. FOREGROUND-COLOR e 167
6.9.19. FROM 168
6.9.20. FULL o e 169
6.9.21. GLOB AL ... 170
6.9.22. GROUP INDICATE ... e 171
6.9.23. HIGHLIGH T e e e 172
6.9.24. JUSTIFIEDo e e e e 173
6.9.25. LEF T LINE .. .o 175
6.9.26. LENGTH-CHECK e 176
6.9.27. LINE ..o 177
6.9.28. LOWELIGH T s 179
6.9.29. NEXT GROUP e e 180
6.9.30. NO-ECHOo e 181
6.9.31. OC CURS ... e 182
6.9.32. OVERLINE e 185
6.9.33. PICTURE e 186
6.9.34. PRESENT WHEN e 193

31 May 2018 Contents

iv GnuCOBOL 3.0 rcl [03May2018] Programmer’s Guide
6.9.35. PROM P T . . 194
6.9.36. PROTECTEDt e e e e e 195
6.9.37. REDEFINES o 196
6.9.38. REN AMES .. 197
6.9.39. REQUIRED e 198
6.9.40. REVERSE-VIDEO e 199
6.9.41. SECURE. 200
6.9.42. SIGN IS .. i 201
6.9.43. SOURCE ... it e e e 202
6.9.44. SUM OF .. e e 203
6.9.45. SYNCRONIZEDt e e 205
6.9.46. T O ..o 207
6.9.47. T Y PE .o 208
6.9.48. UNDERLINE e 209
6.9.49. USAGE 210
6.9.50. USING 219
6.9.51. VALUE ... e 220

7. PROCEDURE DIVISION 223

7.1. PROCEDURE DIVISION USINGttt 224
7.2. PROCEDURE DIVISION CHAINING i 226
7.3. PROCEDURE DIVISION RETURNINGt 228
7.4. PROCEDURE DIVISION Sections and Paragraphs.....................ocooiu... 229
7.5, DECLARATIVES . e 230
7.6. Common Clauses on Executable Statements 232
7.6.1. AT END 4+ NOT AT END . ..o e 232
7.6.2. CORRESPONDING e 234
7.6.3. INVALID KEY + NOT INVALID KEY ... 235
7.6.4. ON EXCEPTION + NOT ON EXCEPTIONo 236
7.6.5. ON OVERFLOW 4+ NOT ON OVERFLOW i 236
7.6.6. ON SIZE ERROR + NOT ON SIZE ERROR......... ... 237
7.6.7. ROUNDED ... e e 237
7.7, Special Registerso 240
7.8. GnuCOBOL Statements.o e 243
7.8 1. ACCE P T .. 243
7.8.1.1. ACCEPT FROM CONSOLE e 243
7.8.1.2. ACCEPT FROM COMMAND-LINE ... 244
7.8.1.3. ACCEPT FROM ENVIRONMENT 245
7.8.1.4. ACCEPT screen-data-item. ..ot 246
7.8.1.5. ACCEPT FROM DATE/TIME.ot 250
7.8.1.6. ACCEPT FROM Screen-Info........ ... 251
7.8.1.7. ACCEPT FROM Runtime-Info........... 252
7.8.1.8. ACCEPT OMITTEDo 253
7.8.1.9. ACCEPT FROM EXCEPTION-STATUS ..ot 254

78,2, A D . 255
T7.8.2.1. ADD MO .. 255
7.8.2.2. ADD GIVING e e 257
7.8.2.3. ADD CORRESPONDINGttt 259
7.8.3. ALLOC AT E ... e 261
7.8 4. AL E R .. 263
T80, CALL . 264
7.8.6. CANCEL ... e 268
T.8.7. CLOSE ..o 269
Contents 31 May 2018

GnuCOBOL 3.0 rcl [03May2018] Programmer’s Guide v

7.8.8. COMMIT .. 270
T7.8.9. COMPUTE e 271
7.8.10. CONTINUE 273
7.8.11. DELETE ... 274
7.8.12. DISP LAY . oo 275
7.8.12.1. DISPLAY UPON deviCe.ot e 275
7.8.12.2. DISPLAY UPON COMMAND-LINE 277
7.8.12.3. DISPLAY UPON ENVIRONMENT-NAME............................ 278
7.8.12.4. DISPLAY screen-data-itemo, 279
T7.8.13. DIVIDE . .. 281
7.8.13.1. DIVIDE INTO i 281
7.8.13.2. DIVIDE INTO GIVING 283
7.8.13.3. DIVIDE BY GIVING e 285
T.8.14. ENTRY ..o 287
7.8.15. EVALUATE ... o 288
7816, XTI T oo 292
T.8.17. FREE . .. 295
7.8.18. GENERATE 296
7.8.19. GOBACK 298
T7.8.20. GO T O ... 299
7.8.20.1. Simple GO TO 299
7.8.20.2. GO TO DEPENDING ON ...t i 300
7.8 2L, T o 302
7.8.22. INITIALIZE 303
7.8.23. INITIATE . ..o e 307
T.8.24. INSPE C T ... 308
7.8.25. MERGE 313
7.8.20. MOVE ... 316
7.8.26.1. Simple MOV E 316
7.8.26.2. MOVE CORRESPONDING e 317
T7.8.27. MULTIPLY ..o e 318
7.8.27.1. MULTIPLY BY ..o 318
7.8.27.2. MULTIPLY GIVING e 320
7.8.28. OPEN . 322
7.8.29. PERFORM 324
7.8.29.1. Procedural PERFORM e 324
7.8.29.2. Inline PERFORM 326
7.8.20.3. VARYING 327
7.8.30. READ ... 330
7.8.30.1. Sequential READ 330
7.8.30.2. Random READ 332
7.831. READY TRACE 334
7.8.32. RELEASE ... 335
7.8.33. RESET TRACE 336
T7.8.34. RETURN ..o 337
7.8.35. REWRITE e 338
7.8.36. ROLLBACKt i 340
7.8.37. SEARCH ... 341
7.8.38. SEARCH ALLo 343
T.8.30. SE T . 345
7.8.39.1. SET ENVIRONMENT 345
7.8.39.2. SET Program-Pointer i 346
7.8.39.3. SET ADDRESS 347

31 May 2018 Contents

vi GnuCOBOL 3.0 rcl [03May2018] Programmer’s Guide
7.8.39.4. SET Index ..o 348
7.8.39.5. SET UP/DOWN .. 349
7.8.39.6. SET Condition NamME.ottt i 350
7.8.39.7. SET SWitCh .. .o 351
7.8.39.8. SET ATTRIBUTE 352
7.8.39.9. SET LAST EXCEPTION 353

T7.8.40. SOR T ... 354
7.8.40.1. File-Based SORT i 354
7.8.40.2. Table SOR T o 358

T.8.41. ST AR . o 360

T.8.42. ST O . . 362

T.8.43. ST RING ..o 364

T7.8.44. SUBT RACT ... 366
7.8.44.1. SUBTRACT FROM i 366
7.8.44.2. SUBTRACT GIVING e 368
7.8.44.3. SUBTRACT CORRESPONDINGo 370

T7.8.45. SUPP RESS ... 371

7.8.46. TERMINATE o 372

7.8.47. TRANSEFORM i 373

T7.8.48. UNLOCK . ..o 374

7.8.49. UNSTRINGttt 375

T.8.50. WRITE ... 379

8. FUNCTIONS ... 383

8.1. Intrinsic FUunCtionsS oo 383

B L. L. AB S o 384

B 1.2, AC O S . 385

8. 1.3, ANNUI T Y . o 386

B L4, ASIN L 387

B LD, A AN o 388

8.1.6. BYTE-LENGTH e 389

.1.7. CHAR ... 390

8.1.8. COMBINED-DATETIME i 391

8.1.9. CONCATENATE i 392

B.1.10. COS . o 393

8.1.11. CURRENCY-SYMBOL i 394

8.1.12. CURRENT-DATE 395

8.1.13. DATE-OF-INTEGER 396

8.1.14. DATE-TO-YYYYMMDD 397

8.1.15. DAY-OF-INTEGER. ... e 398

8.1.16. DAY-TO-YYYYDDD ... e 399

B L. L. B o 400

8.1.18. EXCEPTION-FILE i 401

8.1.19. EXCEPTION-LOCATION e 402

8.1.20. EXCEPTION-STATEMEN T e 403

8.1.21. EXCEPTION-STATUS. ... 404

8. 1.2, E X P oo 406

8.1.23. EXP IOt 407

8.1.24. FACTORIAL 408

8.1.25. FORMATTED-CURRENT-DATE. 409

8.1.26. FORMATTED-DATE e 410

8.1.27. FORMATTED-DATETIME. e 411

8.1.28. FORMATTED-TIMEo 412

Contents 31 May 2018

GnuCOBOL 3.0 rcl [03May2018] Programmer’s Guide vii

8.1.29. FRACTION-PART umt e e 413
8.1.30. HIGHEST-ALGEBRAIC\ oottt e 414
8131 INTEGERttt 415
8.1.32. INTEGER-OF-DATE\ttt 416
8.1.33. INTEGER-OF-DAYttt 417
8.1.34. INTEGER-OF-FORMATTED-DATE.cuviiuiiitae i, 418
8.1.35. INTEGER-PART\ttt 419
8.1.36. LENGTHt e 420
8.1.37. LENGTH-AN ..ottt 421
8.1.38. LOCALE-COMPARE\ttt 422
8.1.39. LOCALE-DATEottt e e 423
8.1.40. LOCALE-TIME\ ottt e e 424
8.1.41. LOCALE-TIME-FROM-SECONDS @ttt 425
8142, LOG oot e 426
8143, LOGLO . ..ot e e 427
8.1.44. LOWER-CASE .. .ottt 428
8.1.45. LOWEST-ALGEBRAIC\ttt e 429
8146, MAX .ot 430
8 LAT. MEAN . 431
8.1.48. MEDIAN . ..ottt e 432
8.1.49. MIDRANGEottt e 433
850, MIN Lo 434
SL5L. MOD ..o e 435
8.1.52. MODULE-CALLERIDvet e e 436
8.1.53. MODULE-DATE\ttt 437
8.1.54. MODULE-FORMATTED-DATEo\ttt 438
8.1.55. MODULE-ID ...\t e 439
8.1.56. MODULE-PATHttt e 440
8.1.57. MODULE-SOURCE ettt e 441
8.1.58. MODULE-TIMEttt 442
8.1.59. MONETARY-DECIMAL-POINT\ttt 443
8.1.60. MONETARY-THOUSANDS-SEPARATOR\t 444
8.1.61. NUMERIC-DECIMAL-POINT\ttt 445
8.1.62. NUMERIC-THOUSANDS-SEPARATOR\t 446
8.1.63. NUMVALottt 447
8.1.64. NUMVAL-C ..ottt e 448
8.1.64B. NUMVAL-C . ..ottt e, 450
8.1.65. NUMVAL-F\t e, 452
8166, ORD ...t e e 453
8.1.67. ORD-MAX ...ttt e e 454
8.1.68. ORD-MIN ...ttt e e 455
L9, Pl 456
8.1.70. PRESENT-VALUE\ttt e 457
8171 RANDOM ...ttt e 458
8172, RANGE © .o 460
873 REM .ot 461
8.1.74. REVERSE . ..ottt e e e 462
8.1.75. SECONDS-FROM-FORMATTED-TIME\ttt 463
8.1.76. SECONDS-PAST-MIDNIGHTouteneae e 464
L7, SIGN ot 465
L8, SIN e 466
8179, SQRT . ..t 467
8.1.80. STANDARD-DEVIATIONottt e 468

31 May 2018

Contents

viii GnuCOBOL 3.0 rcl [03May2018] Programmer’s Guide
8.1.81. STORED-CHAR-LENGTH e 469
8.1.82. SUBSTITUTEo e e e e 470
8.1.83. SUBSTITUTE-CASE ... e 471
B L84, SUM .. 472
B 8. TAN L 473
8.1.86. TEST-DATE-YYYYMMDDo 474
8.1.87. TEST-DAY-YYYYDDD .. e 475
8.1.88. TEST-FORMATTED-DATETIME e 476
8.1.89. TEST-NUMV AL e e 477
8.1.90. TEST-NUMVAL-C e e e 478
8.1.91. TEST-NUMVAL-F ... i 479
B.1.92. TR . .. e 480
8.1.93. UPPER-CASE .. 481
8.1.94. VARIANCEo 482
8.1.95. WHEN-COMPILED e 483
8.1.96. YEAR-TO-Y Y Y Y 484
8.1.97. BOOLEAN-OF-INTEGER . ..o e 485
8.1.98. CHAR-NATTION AL ..o e e e e 486
8.1.99. DISPLAY-OF ... 487
8.1.100. EXCEPTION-FILE-N e 488
8.1.101. EXCEPTION-LOCATION-Nttt 489
8.1.102. INTEGER-OF-BOOLEAN e 490
8.1.103. NATTION AL-OFo e 491
8.1.104. STANDARD-COMPARE o e 492

8.2. Built-In System Subroutines........... ..o i 494
8.2.1. CECALLED BY ..t 496
8.2.2. CBOUHDIR . ..ottt e e 497
B.2.3. CB OO P Y .ottt 498
8.2.4. CEDELETE . .. e 499
8.2.5. CEFILEINFO i 500
8.2.6. COGE T PID ... 501
8. 2.7, CBJUS T Y i e e 502
8.2.8. CEMAKEDIR . ..ottt e e e e 503
8.2.9. CON ARG .. 504
8.2.10. CEPARAMSIZE 505
8.2.11. CEPRINTABLE e e 506
8.2.12. COSLEED i 507
8.2.13. CETOLOWERt 508
8.2.14. CITOUPPERot e 509
8.2.15. CBL_AND .. 510
8.2.16. CBL_.CHANGE_DIR o e 511
8.2.17. CBL_.CHECK _FILE_EXIST e 512
8.2.18. CBL_CLOSE_FILE e 513
8.2.19. CBL_COPY _FILE ... e e 514
8.2.20. CBL_.CREATE_DIR......coiii e e 515
8.2.21. CBL_.CREATE_FILE e 516
8.2.22. CBL_DELETE_DIR. e e e 517
8.2.23. CBL_.DELETE_FILE. e 518
8.2.24. CBLL_EQ -ttt 519
8.2.25. CBL_ERROR_PROC e 520
8.2.26. CBL_EXIT _PROC i e e 522
8.2.27. CBL_FLUSH_FILE e e 524
8.2.28. CBL_GC_FORK e 525

Contents 31 May 2018

GnuCOBOL 3.0 rcl [03May2018] Programmer’s Guide ix

8.2.29. CBL_GC _GETOP T ... 527
8.2.30. CBL_GC_HOSTED e 529
8.2.31. CBL_.GC_NANOSLEEP e 532
8.2.32. CBL_GC_PRINTABLE e e 533
8.2.33. CBL_GC_WAITPID e 534
8.2.34. CBL_GET _CSR _POS ... e 535
8.2.35. CBL_.GET_CURRENT_DIRo 536
8.2.36. CBL_GET _SCR_SIZE e 537
8.2.37. CBLL_IM P .. 538
8.2.38. CBL_INIM P ... 539
8.2.39. CBL_NO R ... 540
8.2.40. CBLL_NO T ... e e 541
8.2.42. CBL_OPEN _FILE e e 542
8.2.43. CBLL_O R .. 543
8.2.44. CBL_READ _FILE ... e e 544
8.2.45. CBL_LREAD_KBD_CHAR e e 545
8.2.46. CBL_LRENAME FILE e 546
8.2.47. CBL_SET _CSR_POS . .. e 547
8.2.48. CBL_TOLOWER i e e 548
8.2.49. CBL_TOUPPER e 548
8.2.50. CBL_WRITE_FILE s 549
8.2.51. CBL_XOR .. 550
8.2.52. SY ST EM ..o 551
8.2 03, X Ol 552

B 2. 0. X 554
B2 00, X D o 554
8200, X A 555

B 2. DT X D 556
9. Report Writer Usage Notes 557
9.1, RWOS LeXICOM . .. v ettt ettt et e e e e e 557
9.2. The Anatomy of a Report 558
9.3. The Anatomy of a Report Page..........oo i 559
9.4. How RWCS Builds Report Pages i 560
9.5. Control Hierarchy e 561
0.6. An EXample 563
0.6. 1. Data . ..ttt 563
9.6.2. Programlottt 565
9.6.3. Generated Report Pages. 569
9.7. Control Hierarchy (Revisited)ot 575
9.8. Turning PHYSICAL Page Formatting Into LOGICAL Formatting 577
10. Interfacing With The OS...... 579
10.1. Compiling Programsuu i e e e 579
10.1.1. cobc - The GnuCOBOL Compiler ... 579
10.1.2. Compilation Time Environment Variables.............. 586
10.1.3. Predefined Compilation Variables........... o i, 588
10.1.4. Locating CopybooKs. 588
10.1.5. Compiler Configuration Files........ ... i i 589
10.2. Running Programs 594
10.2.1. Direct EXeCUtIONot e 594
10.2.2. Executing Dynamically-Loadable Libraries............ oL 595

31 May 2018 Contents

X GnuCOBOL 3.0 rcl [03May2018] Programmer’s Guide

10.2.2.1. cobcrun - Command-line Execution...............o, 995
10.2.2.2. Dynamically Loaded Subprograms................coiiiiiiiiiiiino.... 596
10.2.3. Run Time Environment Variables.......... i, 596
10.2.4. Program ATgUmMENtS.ttt et e 605
10.3. Binary Truncation e 605
11. Sub-Programming..................... 609
11.1. SubpProgram TypPesttt e e e e 609
11.2. Independent vs Contained vs Nested Subprograms...................covion... 609
11.3. Alternate Entry Points 611
11.4. Dynamic vs Static Subprograms. 611
11.5. Subprogram Execution Flow 613
11.5.1. Subroutine Execution Flow......... i i 613
11.5.2. User-Defined Function Execution Flow............ 614
11.6. Sharing Data Between Calling and Called Programs 616
11.6.1. Subprogram ATrgumentsouueen et 616
11.6.1.1. Calling Program Considerations, 616
11.6.1.2. Called Program Considerations........... ..., 617
11.6.2. GLOBAL Data [temsoo e e 617
11.6.3. EXTERNAL Data [temso e 618
11.7. Recursive SUDPrOgIams.ttt e e e 619
11.8. Combining GnuCOBOL and C Programs............ .o, 622
11.8.1. GnuCOBOL Run-Time Library Requirements 622
11.8.2. String Allocation Differences Between GnuCOBOL and C................... 622
11.8.3. Matching C Data Types with GnuCOBOL USAGE’s........................ 623
11.8.4. GnuCOBOL Main Programs CALLing C Subprograms...................... 624
11.8.5. C Main Programs Calling GnuCOBOL Subprograms........................ 625
12. Programming Style Suggestions 627
12.1. Marking Changes in Programs.ouiiiiite i, 627
12.2. Data Item Coding and Naming Conventions........... ... 628
12.3. Table Subscripting versus Table Indexing 630
12.4. Copybook Naming Conventions and Usage............ccooiiiiiiiiiiiiiiann... 632
12.5. PROCEDURE DIVISION Sections Versus Paragraphs........................... 632
12.6. COMPUTE Versus ADD-SUBTRACT-MULTIPLY-DIVIDE..................... 634
Appendix A - Glossary of Terms............................... 635
Appendix B - Reserved Word List............................. 643
Appendix C - GNU Free Documentation License............. 649
Appendix D - Summary of Document Changes............... 657
Appendix E - Summary of Compiler Changes since
2009 and version v1-1 i 665
Index 675

Contents 31 May 2018

GnuCOBOL 3.0 rcl [03May2018] Programmer’s Guide 1

Amendment Changes for Programmers Guide

For a full 1list of all changes since the 1st Edition, see Appendix D.

6th Edition On release of v3.0 rcl.

1.

NS e

17/12 Update description for NUMVAL-C along with missing 2nd & 3rd arguments and
more detail.

Added missing third parameter execution-time to functions DATE-TO-YYYYMMDD,
DAY-TO-YYYYDDD, YEAR-TO-YYYY.

Added missing functions: FORMATTED-CURRENT-DATE, FORMATTED-DATE,
FORMATTED-DATETIME, FORMATTED-TIME, INTEGER-OF-FORMATTED-
DATE, TEST-FORMATTED-DATETIME and renumbered all functions accordingly by
position in Guide.

18/12 More notes for NUMVAL, NUMVAL-C.
NUMVAL-C contains two references for testing descriptions.

Removed the 'syntax ref for FINAL CONTROL FOOTINGS at 7.2.

Removed incorrect information about a fatal error when opening or other processing of a
file as all errors can be recovered with a Cobol program using file status test or using a
Declarative section.

8. 19/12 Moved current updates section in D and top of manual into a included text file.

10.
11.
12.
13.

14.

15.
16.
17.
18.

19.

20/12 Added comment regard REPORT section clauses and their order.

21/12 Run Spellcheck against manual sources to catch typo’s.

Added warning about using WS area only for data referenced within RW.

Removed warning in RW notes about CODE IS and COLUMNS are ignored - not any more.

23/12 Moved chap. 7 - 10 to 9 - 12, 3 -6 to 4 - 7. Created new ch.2 from 1.3 & new
ch.8 from 7.16 to ch. 8. Moved 8.21 to special registers?. Removed report about specific

non-implemented functions in 8.1 that now are. Inserted page breaks in 8.2. Moved Ch.
7.6 - 7.13 to at end of Ch. 2. NEEDS resorting.

24/12 Added support for SPLIT and SPARSE keys in ISAM (Indexed) type files see refer-
ences for RECORD and ALTERNATE KEY clauses. Update ChangeLog.

Create index for 'Split Keys’ reference.
25/12 Remove comment from RW chapter about availability as now included.
27/12 Added missing SET LAST EXCEPTION to PG and QR.

Added un-implemented functions: BOOLEAN-OF-INTEGER, CHAR-NATIONAL,
DISPLAY-OF, EXCEPTION-FILE-N, EXCEPTION-LOCATION-N, INTEGER-
OF-BOOLEAN, NATIONAL-OF, STANDARD-COMPARE with warning not

implemented.

Added missing system functions CBL_LREAD_KBD_CHAR & CBL_SET_CSR_POS. Spot-
ted in NEWS file.

31 May 2018 Contents

20.
21.
22.
23.
24.
25.

26.

27.

28.
29.
30.
31.

32.

33.

34.
35.

36.

GnuCOBOL 3.0 rcl [03May2018] Programmer’s Guide

29/12 Adjusted format for select idx to reduce width of text.

01/01 Update all 3 for 01 Jan 2018.

05/01 Updated contents of runtime.cfg in Chp. 10.

13/01 Updated comments for CBL_.CHECK_FILE_EXIST as back to front/wrong.
14/02 For SORT replaced diagram reference of file-name-3 to file-name-2 as wrong.

19/02 Updated references for RWCS in Chap. 1 to point correctly to 2.1.13. Included
comment about the NEWS file for up to the minute changes to language features. Included
auto version refs in ch. 1 & 2 but some may well still be missing.

15/03 Updated references for CBL_READ_KBD_CHAR but with content from MF WB
but better than nothing.

26/03 Updated Perform varying in 7.8.29.3 to show that omitting sub-clause BY will be
treated as if 'BY 1’ was specified. Changed 11.8.3 text.

27/03 Changed >>SET CONSTANT to remove refs to ’AS’ changes to 11.8.3 removed dups.
01/04 Fixes for #Bug 508, 505.
09/04 Changed version/build to intermediate date and version as I give up guessing when.

19/04 Changed details regard internal compiler variable COB_MAX_FIELD_PARAMS used
in call.c from common.c in sections 7.8.5 and 11.6.1.1 also change reference of 11.5.1 in
section 11.6 to be 11.6.1.

08/05 Updated version and date for current compiler also changed references for 20XX
standard to 2014 with other minor comments in section 1. Changed 2.1.13 to specify that
RWCS is available as at v3.0 and removed link info at SF as redundant with release of v3.0.

22/05 Changes to: 8.1.58 reload program output for v3.0 but not showing any difference,
8.2.28 Clean up description swapping ’/’ with ’and’.

26/05 Added missing screen io status codes in 7.8.1.4.13. - Bug #524.

30/05 Changed case of COBOL to Cobol in regard to the language in section 2 to ease
reading and added comment re: compiler name by case. Added notes regarding reserved
word count and list in 2.1.2 and Appendix B. Spelling error (missing ’s’) in 2.1.2. Bug
#525.

31/05 Changed case of > Cobol * to > COBOL ’ throught out document but most seems to
be in chaps. 1 & 2.

Contents 31 May 2018

GnuCOBOL 3.0 rcl [03May2018] Programmer’s Guide 3

1. Introduction

This document describes the syntax, semantics and usage of the COBOL programming language
as implemented by the current version of GnuCOBOL, formerly known as OpenCOBOL.

The original principal developers of GnuCOBOL were Keisuke Nishida and Roger While. Since
then, many others of the GnuCobol community are directly involved in it’s development at any
one time.

This document is intended to serve as a full-function reference and user’s guide suitable for both
those readers learning COBOL for the first time as usage as a training tool, as well as those
already familiar with some dialect of the COBOL language.

A separate manual exists that just contains the details of the GnuCOBOL implementation which
is designed strictly for experienced COBOL programmers taken from this guide. This document
(GnuCobol Quick Reference) does NOT contain any training subject matter.

Caution. Although this document is for version 3.0 rcl of the compiler, it also includes a
description of the functions of the RWCS (Report Writer module) which is not included in
earlier versions such as v2.2. Please see availability notes on this at 2.1.13 (see [Report Writer
Features], page 23).

Another document that should be read, is the file NEWS that is supplied with the source code
of the GnuCOBOL compiler, in the top level directory. Here you will find the latest COBOL
language features that have been added, and some of these may not be in this document due
to time constraints (Or more likely, no one mentioned it to the manual maintainer). If you find
any please report it as a bug for the Programers Guide so that it can be fixed.

1.1. Additional Reference Sources

For those wishing to learn COBOL for the first time, I can strongly recommend the following
resources.

If you like to hold a book in your hands, I strongly recommend "Murach’s Structured COBOL",
by Mike Murach, Anne Prince and Raul Menendez (2000) - ISBN 9781890774059. Mike Murach
and his various writing partners have been writing outstanding COBOL textbooks for decades,
and this text is no exception. It’s an excellent book for those familiar with the concepts of
programming in other languages, but unfamiliar with COBOL.

Would you prefer a web-based tutorial? Try the University of Limerick (Ireland) COBOL web
site - ‘http://www.csis.ul.ie/cobol/’.

In addition there is the GNU COBOL FAQ on the project website at sourceforge which has now
exceeded 1,400 pages available as html or a downloadable .pdf file.

1.2. Introducing COBOL

If you already know a programming language, and that language isn’t COBOL, chances are that
language is Java, C or C++. You will find COBOL a much different programming language than
those; sometimes those differences are a good thing and sometimes they aren’t. The thing to
remember about COBOL is this — it was designed to solve business problems.

COBOL, first introduced to the programming public in 1959, was the very first programming
language to become standardized (in 1960). This meant that a standard-compliant COBOL

31 May 2018 Chapter 1 - Introduction

4 GnuCOBOL 3.0 rcl [03May2018] Programmer’s Guide

program written on computer "A" made by company "B" would be able to be compiled and
executed on computer "X" made by company "Y" with very few, if any, changes. This may not
seem like such a big deal today, but it was a radical departure from all programming languages
that came before it and even many that came after it.

The name COBOL actually says it all — COBOL is an acronym that stands for "(CO)mmon
(B)usiness (O)riented (L)anguage". Note the fact that the word "common" comes before all
others. The word "business" is a close second. Therein lies the key to COBOL’s success.

1.2.1. Why YOU Should Learn COBOL

Despite statements from industry "insiders", the COBOL programming language is not dead,
even though newer and so-called "modern" languages like Java, C#, .NET, Ruby on Rails and
so on appear to have become the languages of choice in the Information Technology world.
These languages have become popular because they address the following desired requirements
for "modern" programming;:

1. They conform to the principles of Object-Oriented Programming (OOP). This is desired
for one major reason — it facilitates "code re-usability", thus improving the productivity
of programmers by allowing them to re-use previously written (and debugged) code in new
applications. For one reason or another, COBOL is perceived as being weak in this regard.
It isn’t (especially today), as we’ll see in the next section, but perception is important.

2. Those languages aren’t limited to mainframe computers, as COBOL is perceived to be.
Some, like .NET and Ruby, aren’t even available on mainframes. The "modern" program-
ming languages were designed and intended for use on the full variety of computer platforms,
from shirt-pocket computers (i.e. smart phones) up to the most massive of supercomputers.

3. There are several excellent commercially available COBOL implementations available for
non-mainframe systems (Micro Focus COBOL, AccuCOBOL, NetCOBOL and Elastic
COBOL, just to name a few), including Windows and UNIX/Linux systems. These aren’t
cheap, however.

4. Universities love the "Modern" languages. In the U.S., 73% of colleges lack even one COBOL
course on their curricula. COBOL, it appears, is no longer "cool" enough for students to
fill a classroom.

Just because COBOL doesn’t traditionally support objects, classes, and the like doesn’t mean
that its "procedural" approach to computing isn’t valuable — after all, it runs 70% of the worlds
business transactions, and does so:

e Using programs that, for the most part, are much more self-documenting than would be
the case with any other programming language.

e Effortlessly providing arithmetic accuracy to 31 digits, with performance approaching that
of well-written assembly-language programs. Don’t think this isn’t critically important to
banks, investment houses and any business interested in tracking revenues, expenses and
profits (duh - like ALL of them).

e Integrating well with non-COBOL infrastructures such as XML, SOA, MQ, almost any
DBMS, Transaction Processing platforms, Queue-Management facilities and other program-
ming languages.

e By running on almost as many different computing platforms as Java can. You can’t run

Chapter 1 - Introduction 31 May 2018

GnuCOBOL 3.0 rcl [03May2018] Programmer’s Guide 5

COBOL programs in your smart phone, but desktops, workstations, midframes/servers,
mainframes and supercomputers are all fair game.

Today’s IT managers and business leaders are faced with a challenging dilemma — how do you
maintain the enormous COBOL code base that is still running their businesses when academia
has all but abandoned the language they need their people to use to keep the wheels rolling?
The problem is compounded by the fact that those programmers that are skilled in COBOL are
retiring and taking their knowledge with them. In some markets, this appears to be having an
inflationary effect on the cost of resources (COBOL programmers) whose supply is becoming
smaller and smaller. The pressure to update applications to make use of more up-to-date
graphical user interfaces is also perceived as a reason to abandon COBOL in favour of GUI-
friendly languages such as Java.

Businesses are addressing the COBOL challenge in different ways:

1. By undertaking so-called "modernization projects", where existing applications are either
rewritten in "modern" languages or replaced outright with purchased packages. Most of
these businesses are using such activities as an excuse to abandon "expensive" mainframes
in favour of (presumably) less-expensive "open systems" (mid frame/server) solutions.

2. Many times these businesses are finding the cost of the system/networking engineering,
operational management and monitoring and risk management (i.e. disaster recovery) in-
frastructures necessary to support truly mission-critical applications to be so high that the
"less-expensive" solution really isn’t; in these cases the mainframe may remain the best
option, thus leaving COBOL in play and businesses seeking another solution for at least
part of their application base.

3. Training their own COBOL programmers. Since colleges, universities and technical schools
have lost interest in doing so, many businesses have undertaken the task of "growing their
own" new crop of COBOL programmers. Fear of being pigeon-holed into a niche technology
is a factor inhibiting many of today’s programmers from willingly volunteering for such
training.

4. By moving the user-interface onto the desktop; such efforts involve running modern-language
front-end clients on user desktops (or laptops or smart phones, etc.) with COBOL pro-
grams providing server functionality on mainframe or midframe platforms, providing all
the database and file "heavy lifting" on the back-end. Solutions like this provide users with
the user-interfaces they want/need while still leveraging COBOL’s strengths on (possibly)
downsized legacy mainframe or midframe systems.

It’s probably a true that an IT professional can no longer afford to allow COBOL to be the
only wrench in their toolbox, but with a massive code base still in production now and for the
foreseeable future, adding COBOL to a multi-lingual curriculum vitae (CV) and/or resume (yes
— they ARE different) is not a bad thing at all. Knowing COBOL as well as the language
du-jour will make you the smartest person in the room when the discussion of migrating the
current "legacy" environment to a "modern" implementation comes around.

You'll find COBOL an easy language to learn and a FAR EASIER language to master than
many of the "modern" languages.

The whole reason you’re reading this is that you've discovered GnuCOBOL — another imple-
mentation of COBOL in addition to those mentioned earlier. The distinguishing characteristic of
GnuCOBOL versus those others is that GnuCOBOL is FREE open-source and therefore FREE

31 May 2018 Chapter 1 - Introduction

6 GnuCOBOL 3.0 rcl [03May2018] Programmer’s Guide

to obtain and use. It is community-enhanced and community-supported. Later in this docu-
ment (see [So What is GnuCOBOL?], page 7), you’ll begin to learn more about this COBOL
implementation’s capabilities.

1.2.2. Programmer Productivity

Throughout the history of computer programming, the search for new ways to improve of the
productivity of programmers has been a major consideration. Other than hobbyists, program-
ming is an activity performed for money, and businesses abhor spending anything more than is
absolutely necessary; even government agencies try to spend as little money on projects as is
absolutely necessary.

The amount of programming necessary to accomplish a given task — including rework needed
by any errors found during testing (testing is sometimes jokingly defined as: "that time during
which an application is actually in production, allowing users to discover the problems") is the
measure of programmer productivity. Anything that reduces that effort will therefore reduce
the time spent in such activities therefore reducing the expense of same. When the expense of
programming is reduced, programmer productivity is increased.

Sometimes the quest for improved programmer productivity (and therefore reduced program-
ming ezxpense) has taken the form of introducing new features in programming languages, or
even new languages altogether. Sometimes it has resulted in new ways of using the existing
languages.

While many technological and procedural developments have made evolutionary improvements
to programmer productivity, each of the following three events has been responsible for revolu-
tionary improvements:

e The development of so-called "higher-level" programming languages that enable a program-
mer to specify in a single statement of the language an action that would have required
many more separate statements in a prior programming language. The standardization of
such languages, making them usable on a wide variety of computers and operating systems,
was a key aspect of this development. COBOL was a pioneering development in this area,
being a direct descendant of the very first higher-level language (FLOW-MATIC, developed
by US Naval Lieutenant Grace Hopper) and the first to become standardized.

e The establishment of programming techniques that make programs easier to read and there-
fore easier to understand. Not only do such techniques reduce the amount of rework neces-
sary simply to make a program work as designed, but they also reduce the amount of time
a programmer needs to study an existing program in order how to best adapt it to changing
business requirements. The foremost development in this area was structured programming.
Introduced in the late 1970’s, this approach to programming spawned new programming
languages (PASCAL, ALGOL, PL/1 and so forth) designed around it. With the ANSI 85
standard, COBOL embraced the principles espoused by structured programming mavens
as well as any of the languages designed strictly around it.

e The establishment of programming techniques AND the introduction of programming lan-
guage capabilities to facilitate the re-usability of program code. Anything that supports
code re-usability can have a profound impact to the amount of time it takes to develop new
applications or to make significant changes to existing ones. In recent years, object-oriented
programming (OOP) has been the industry "poster child" for code re-usability. By enabling
program logic and the data structures that logic manipulates to be encapsulated into easily
stored and retrieved (and therefore "reusable") modules called classes, the object-oriented

Chapter 1 - Introduction 31 May 2018

GnuCOBOL 3.0 rcl [03May2018] Programmer’s Guide 7

languages such as Java, C++ and C# have become the favourites of academia. Since stu-
dents are being trained in these languages and only these, by and large, it’s no surprise that
— today — object-oriented programming languages are the darlings of the industry.

The reality is, however, that good programmers have been practising code re-usability for
more than a half-century. Up until recently, COBOL programmers have had some of the best
code re-usability tools available — they’ve been doing it with copybooks and subprograms
rather than classes, methods and attributes but the net results have been similar. With
the COBOL2002 and the COBOL 2014 standards, the COBOL programming language has
become just as "object-oriented" as the "modern" languages, while preserving the ability
to support, modify, compile and execute "legacy" COBOL programs as well.

While GnuCOBOL supports few of the OOP programming constructs defined by the
COBOL2002 and COBOL2014 standards, it supports every aspect of the ANSI 85 standard
and therefore fully meets the needs of points #1 and #2, above. With it’s supported feature
set (see [So What is GnuCOBOL?], page 7), it provides significant programmer productivity
capabilities.

1.3. So What is GnuCOBOL?

GnuCOBOL is a free and open sourced COBOL compiler and runtime environment, written
using the C programming language. GnuCOBOL is typically distributed in source-code form,
and must then be built for your computer’s operating system using the system’s C compiler and
loader. While originally developed for the UNIX and Linux operating systems, GnuCOBOL
has also been successfully built for computers running OSX and Windows utilizing the UNIX-
emulation features of such tools as Cygwin and MinGW. Also see the GNU website for more
information at https://savannah.gnu.org/projects/gnucobol.

The MinGW approach is a personal favourite with the author of this manual because it cre-
ates a GnuCOBOL compiler and runtime library that require only a single MinGW DLL to be
available for the GnuCOBOL compiler, runtime library and user programs. That DLL is freely
distributable under the terms of the GNU General Public License. A MinGW build of Gnu-
COBOL fits easily on and runs from a 128MB flash drive with no need to install any software onto
the Windows computer that will be using it. Some functionality of the language, dealing with
the sharing of files between concurrently executing GnuCOBOL programs and record locking on
certain types of files, is sacrificed however as the underlying operating system routines needed to
implement them aren’t available to Windows and aren’t provided by MinGW. The current ver-
sion for MinGW is available at the download link along with various other platforms at the Gnu-
Cobol download website (https://sourceforge.net/projects/open-cobol/files/gnu-cobol/3.0/).

GnuCOBOL has also been built as a truly native Windows application utilizing Microsoft’s
freely-downloadable Visual Studio Express package to provide the C compiler and linker/loader.
This approach does not lend itself well to a "portable" distribution.

The GnuCOBOL compiler generates C code from your COBOL programs; that C code is then
automatically compiled and linked using your system’s C compiler (typically, but not limited
to, "gee").

GnuCOBOL fully supports much of the ANSI 85 standard for COBOL (the only major ex-

clusion is the Communications Module) and also supports some of the components of the
COBOL2002 and COBOL2014 standards, such as the "SCREEN SECTION" (see [SCREEN SEC-

31 May 2018 Chapter 1 - Introduction

8 GnuCOBOL 3.0 rcl [03May2018] Programmer’s Guide

TION], page 140), table-based "SORT" (see [Table SORT], page 358) and user-defined functions.
There are others with more being added almost weekly.

End of Chapter 1 — Introduction

Chapter 1 - Introduction 31 May 2018

GnuCOBOL 3.0 rcl [03May2018] Programmer’s Guide 9

2. Cobol Fundamentals

This chapter describes the syntax, semantics and usage of the COBOL programming language
as implemented by the current version of GnuCOBOL. For the resr of this document the Lan-

guage is spelt as COBOL to ease reading however the compiler name retains the mixed case of
GnuCOBOL.

This document is intended to serve as a full-function reference and user’s guide suitable for both
those readers learning COBOL for the first time as usage as a training tool, as well as those
already familiar with some dialect of the COBOL language.

Separate manuals exists that just contains the details of the GnuCOBOL implementation which
is designed strictly for experienced COBOL programmers taken from this guide. These do NOT
contain any training subject matter.

These manauls are GnuCOBOL Quick Reference and this contains just the COBOL semantics
in a short document while the other, GhuCOBOL Programmers Reference contains only the
COBOL Language elements taken from this document again for experienced COBOL program-
mers needing the COBOL implementation as used in GnuCOBOL.

2.1. The COBOL Language - The Basics

2.1.1. Language Reserved Words

Cobol programs consist of a sequence of words and symbols. Words, which consist of sequences
of letters (upper- and/or lower-case), digits, dashes ("-") and/or underscores ("_") may have a
pre-defined, specific, meaning to the compiler or may be invented by the programmer for his/her
purposes.

The GnuCOBOL language specification defines over 1130 ’Reserved Words’ — words to which
the compiler assigns a special meaning.

Programmers may use a reserved word as part of a word they are creating themselves, but may
not create their own word as an exact duplicate (without regard to case) of a COBOL reserved
word. Note that a reserved word includes all classes, such as intrinsic functions, mnemonics
names, system routines and reserved words. The list of reserved words can be changed by
adding or removing specific words for a given compile or as a default by use of the line command
—std=. See the specific config files that are by default, held in /usr/local/share/gnucobol/config.
Also using the option "FUNCTION ALL INTRINSIC", will add another 100+ reserved words.

See [Appendix B - Reserved Word List], page 643, for a complete list of GnuCOBOL reserved
words for the current release.

For any given version of GnuCOBOL you can also list the full current set of reserved words by
running cobc with —list-reserved, —list-intrinsic, —list-system as well as —list-mnemonics. Again
subject to variation depending on usage of the —std line command.

2.1.2. User-Defined Words

When you write GnuCOBOL programs, you’ll need to create a variety of words to represent
various aspects of the program, the program’s data and the external environment in which the
program will run. This will include internal names by which data files will be referenced, data
item names and names of executable logic procedures.

31 May 2018 Chapter 2 - Cobol Fundamentals

10 GnuCOBOL 3.0 rcl [03May2018] Programmer’s Guide

User-defined words may be composed from the characters "A" through "Z" (upper- and/or
lower-case), "0" through "9", dash ("-") and underscore ("_"). User-defined words may neither
start nor end with hyphen or underscore characters.

Other programming languages provide the programmer with a similar capability of creating
their own words (names) for parts of a program; COBOL is somewhat unusual when compared
to other languages in that user-defined words may start with a digit.

With the exception of logic procedure names, which may consist entirely of nothing but digits,
user-defined words must contain at least one letter.

2.1.3. Case Insensitivity

All COBOL implementations allow the use of both upper and lower case letters in program
coding. GnuCOBOL is completely insensitive to the case used when writing reserved words or
user-defined names. Thus, "AAAAA", "aaaaa", "Aaaaa" and "AaAaA" are all the same word as
far as GnuCOBOL is concerned.

The only time the case used does matter is within quoted character strings, where character
values will be exactly as coded.

By convention throughout this document, COBOL reserved words will be shown entirely in
UPPER-CASE while those words that were created by a programmer will be represented by
tokens in mixed or lower case.

This isn’t a bad practice to use in actual programs, as it leads to programs where it is much
easier to distinguish reserved words from user-defined ones!

2.1.4. Readability of Programs

The most vociferous critics of COBOL frequently focus on the wordiness of the language, often
citing the case of a so-called "Hello World" program as the "proof" that COBOL is so much
more tedious to program in than more "modern" languages. This tedium is cited as such a
significant impact to programmer productivity that, in their opinions, COBOL can’t go away
quickly enough.

Here are two different "Hello World" applications — one written in Java and the second in
GnuCOBOL. First, the Java version:

Class HelloWorld {
public static void main(String[] args) {
System.out.println("Hello World!");
}

And here is the same program, written in GnuCOBOL:

IDENTIFICATION DIVISION.

PROGRAM-ID. HelloWorld.

PROCEDURE DIVISION.
DISPLAY "Hello World!".

Both of the above programs could have been written on a single line, if desired, and both
languages allow a programmer to use (or not use) indentation as they see fit to improve program
readability. Sounds like a tie so far.

Chapter 2 - Cobol Fundamentals 31 May 2018

GnuCOBOL 3.0 rcl [03May2018] Programmer’s Guide 11

Let’s look at how much more "wordy" COBOL is than Java. Count the characters in the two
programs. The Java program has 95 (not counting carriage returns and any indentation). The
COBOL program has 89 (again, not counting carriage returns and indentation)! Technically, it
could have been only 65 because the "IDENTIFICATION DIVISION." header is actually optional.
Clearly, "Hello World" doesn’t look any more concise in Java than it does in COBOL.

Let’s look at a different problem. Surely a program that asks a user to input a positive integer,
generates the sum of all positive integers from 1 to that number and then prints the result will
be MUCH shorter and MUCH easier to understand when coded in Java than in COBOL, right?

You can be the judge. First, the Java version:

import java.util.Scanner;
public class sumofintegers {
public static void main(String[] arg) {
System.out.println("Enter a positive integer");
Scanner scan=new Scanner (System.in);
int n=scan.nextInt();
int sum=0;
for (int i=1;i<=n;i++) {
sum+=i;
b

System.out.println("The sum is "+sum);

And now for the COBOL version:

IDENTIFICATION DIVISION.

PROGRAM-ID. SumOfIntegers.

DATA DIVISION.

WORKING-STORAGE SECTION.

01 n BINARY-LONG.

01 i BINARY-LONG.

01 sum BINARY-LONG VALUE O.

PROCEDURE DIVISION.

DISPLAY "Enter a positive integer"

ACCEPT n

PERFORM VARYING i FROM 1 BY 1 UNTIL i > n
ADD i TO sum

END-PERFORM

DISPLAY "The sum is " sum.

My familiarity with COBOL may be prejudicing my opinion, but it doesn’t appear to me that
the Java code is any simpler than the COBOL code. In case you're interested in character
counts, the Java code comes in at 278 (not counting indentation characters). The COBOL code
is 298 (274 without the "IDENTIFICATION DIVISION." header).

Despite what you’ve seen here, the more complex the programming logic being implemented,
the more concise the Java code will appear to be, even compared to 2002-standard COBOL.
That conciseness comes with a price though — program code readability. Java (or C or C++ or
C#) programs are generally intelligible only to trained programmers. COBOL programs can,
however, be quite understandable by non-programmers. This is actually a side-effect of the

31 May 2018 Chapter 2 - Cobol Fundamentals

12 GnuCOBOL 3.0 rcl [03May2018] Programmer’s Guide

"wordiness" of the language, where COBOL statements use natural English words to describe
their actions. This inherent readability has come in handy many times throughout my career
when I've had to learn obscure business (or legal) processes by reading the COBOL program
code that supports them.

The "modern" languages, like Java, also have their own "boilerplate" infrastructure overhead
that must be coded in order to write the logic that is necessary in the program. Take for ex-
ample the "public static void main(String[] arg)" and "import java.util.Scanner;"
statements. The critics tend to forget about this when they criticize COBOL for it’s structural
"overhead".

When it first was developed, COBOL’s easily-readable syntax made it profoundly different from
anything that had been seen before. For the first time, it was possible to specify logic in a
manner that was — at least to some extent — comprehensible even to non-programmers. Take
for example, the following code written in FORTRAN — a language developed only a year
before COBOL:

EXT = PRICE * IQTY
INVTOT = INVTOT + EXT

With its original limitation on the length of variable names (one- to six-character names com-
prised of a letter followed by up to five letters and/or digits), it’s implicit rule that variable were
automatically created as real (floating-point) unless their name started with a letter in the range
I-N, and its use of algebraic notation to express actions being taken, FORTRAN wasn’t a par-
ticularly readable language, even for programmers. Compare this with the equivalent COBOL
code:

MULTIPLY price BY quantity GIVING extended-amount
ADD extended-amount TO invoice-total

Clearly, even a non-programmer could at least conceptually understand what was going on! Over
time, languages like FORTRAN evolved more robust variable names, and COBOL introduced a
more formula-based syntactical capability for arithmetic operations, but FORTRAN was never
as readable as COBOL.

Because of its inherent readability, I would MUCH rather be handed an assignment to make
significant changes to a COBOL program about which I know nothing than to be asked to do
the same with a C, C++, C# or Java program.

Those that argue that it is too boring / wasteful / time-consuming / insulting (pick one) to
have to code a COBOL program "from scratch" are clearly ignorant of the following facts:

e Many systems have program-development tools available to ease the task of coding pro-
grams; those tools that concentrate on COBOL are capable of providing templates for
much of the "overhead" verbiage of any program. . .

e Good programmers have — for decades — maintained their own skeleton "template" pro-
grams for a variety of program types; simply load a template into a text editor and you’ve
got a good start to the program. . .

e Legend has it that there’s actually only been ONE program ever written in COBOL, and
all programs ever "written" thereafter were simply derivatives of that one. Although this
is clearly intended as a (probably) bad joke, it is nevertheless close to the very simple
truth that many programmers"reuse" existing COBOL programs when creating new ones.

Chapter 2 - Cobol Fundamentals 31 May 2018

GnuCOBOL 3.0 rcl [03May2018] Programmer’s Guide 13

There’s certainly nothing preventing this from happening with programs written in other
languages, but it does seem to happen more in COBOL shops. It’s ironic that "code re-
usability" is one of the arguments used to justify the existence of the "modern" languages.

2.1.5. Divisions Organize Programs

COBOL programs are structured into four major areas of coding, each with its own purpose.
These four areas are known as divisions.

Each division may consist of a variety of sections and each section consists of one or more
paragraphs. A paragraph consists of sentences, each of which consists of one or more statements.

This hierarchical structure of program components standardizes the composition of all COBOL
programs. Much of this manual describes the various divisions, sections, paragraphs and state-
ments that may comprise any COBOL program.

2.1.6. Copybooks

A *Copybook’ is a segment of program code that may be utilized by multiple programs simply
by having those programs use the "COPY" statement (see [COPY], page 65) to import that code.
This code may define files, data structures or procedural code.

Today’s current programming languages have a statement (usually, this statement is named
"import", "include" or "#include") that performs this same function. What makes the COBOL
copybook feature different than the "include" facility in newer languages, however, is the fact
that the "COPY" statement can edit the imported source code as it is being copied. This capability
makes copybook libraries extremely valuable to making code reusable.

2.1.7. Structured Data

A contiguous area of storage within the memory space of a program that may be referenced, by
name, in a COBOL program is referred to as a ’Data Item’. Other programming languages use
the term variable, property or attribute to describe the same thing.

COBOL introduced the concept of structured data. The principle of structured data in COBOL
is based on the idea of being able to group related and contiguously-allocated data items together
into a single aggregate data item, called a ’Group Item’. For example, a 35-character "Employee-
Name’ group item might consist of a 20-character "Last-Name’ followed by a 14-character 'First-
Name’ and a 1-character 'Middle-Initial’.

A data item that isn’t itself formed from other data items is referred to in COBOL as an
'Elementary Item’. In the previous example, ’Last-Name’, 'First-Name’ and ’Middle-Initial’ are
all elementary items.

2.1.8. Files

One of COBOL’s strengths is the wide variety of data files it is capable of accessing. GnuCOBOL
programs, like those created with other COBOL implementations, need to have the structure of
any files they will be reading and/or writing described to them. The highest-level characteristic
of a file’s structure is defined by specifying the organization of the file, as follows:

"ORGANIZATION LINE SEQUENTIAL"

These are files with the simplest of all internal structures. Their contents are struc-
tured simply as a series of identically- or differently-sized data records, each termi-

31 May 2018 Chapter 2 - Cobol Fundamentals

14 GnuCOBOL 3.0 rcl [03May2018] Programmer’s Guide

nated by a special end-of-record delimiter character. An ASCII line-feed character
(hexadecimal 0A) is the end-of-record delimiter character used by any UNIX or
pseudo-UNIX (MinGW, Cygwin, OSX) GnuCOBOL build. A truly native Win-
dows build would use a carriage-return, line-feed (hexadecimal 0D0OA) sequence.

Records must be read from or written to these files in a purely sequential manner.
The only way to read (or write) record number 100 would be to have read (or
written) records number 1 through 99 first.

When the file is written to by a GnuCOBOL program, the delimiter sequence will be
automatically appended to each data record as it is written to the file. A "WRITE"
(see [WRITE], page 379) to this type of file will be done as if a "BEFORE ADVANCING
1 LINE" clause were specified on the "WRITE", if no "ADVANCING" clause is coded.

When the file is read, the GnuCOBOL runtime system will strip the trailing delimiter
sequence from each record. The data will be padded (on the right) with spaces if the
data just read is shorter than the area described for data records in the program. If
the data is too long, it will be truncated and the excess will be lost.

These files should not be defined to contain any exact binary data fields because the
contents of those fields could inadvertently have the end-of-record sequence as part
of their values — this would confuse the runtime system when reading the file, and
it would interpret that value as an actual end-of-record sequence.

"LINE ADVANCING"

These are files with an internal structure similar to that of a line sequential file.
These files are defined (without an explicit "ORGANIZATION" specification) using the
"LINE ADVANCING" clause on their "SELECT" statement (see [SELECT], page 101).

When this kind of file is written to by a GnuCOBOL program, an end-of-record
delimiter sequence will be automatically added to each data record as it is written
to the file. A "WRITE" to this type of file will be done as if an "AFTER ADVANCING
1 LINE" clause were specified on the "WRITE", if no "ADVANCING" clause is coded.

Like line sequential files, these files should not be defined to contain any exact binary
data fields because the contents of those fields could inadvertently have the end-of-
record sequence as part of their values — this would confuse the runtime system
when reading the file, and it would interpret that value as an actual end-of-record
sequence.

"ORGANIZATION SEQUENTIAL"

These files also have a simple internal structure. Their contents are structured sim-
ply as an arbitrarily-long sequence of data characters. This sequence of characters
will be treated as a series of fixed-length records simply by logically splitting the
sequence of characters up into fixed-length segments, each as long as the maximum
record size defined in the program. There are no special end-of-record delimiter
characters in the file and when the file is written to by a GnuCOBOL program, no
delimiter sequence is appended to the data.

Records in this type of file are all the same physical length, except possibly for the
very last record in the file, which may be shorter than the others. If variable-length
logical records are defined to the program, the space occupied by each physical

Chapter 2 - Cobol Fundamentals 31 May 2018

GnuCOBOL 3.0 rcl [03May2018] Programmer’s Guide 15

record in the file will occupy the space described by the longest record description
in the program.

So, if a file contains 1275 characters of data, and a program defines the structure
of that file as containing 100-character records, then the file contents will consist of
twelve (12) 100-character records with a final record containing only 75 characters.

It would appear that it should be possible to locate and process any record in the
file directly simply by calculating its starting character position based upon the
program-defined record size. Even so, however, records must be still be read or
written to these files in a purely sequential manner. The only way to read (or write)
record number 100 would be to have read (or written) records number 1 through 99
first.

When the file is read, the data is transferred into the program exactly as it exists in
the file. In the event that a short record is read as the very last record, that record
will be padded (to the right) with spaces.

Care must be taken that programs reading such a file describe records whose length
is exactly the same as that used by the program that created the file. For example,
the following shows the contents of a "SEQUENTIAL" file created by a program that
wrote five 6-character records to it. The "A", "B", ... values reflect the records
that were written to the file:

‘AAAAAABBBBBBCCCCCCDDDDDDEEEEEE’

Now, assume that another program reads this file, but describes 10-character records
rather than 6. Here are the records that program will read:

‘AAAAAABBBB’
‘BBCCCCCCDD’
‘DDDDEEEEEE’

There may be times where this is exactly what you were looking for. More often than
not, however, this is not desirable behaviour. Suggestion: use a copybook to describe
the record layouts of any file; this guarantees that multiple programs accessing that
file will "see" the same record sizes and layouts by coding a "COPY" statement (see
[COPY], page 65) to import the record layout(s) rather than hand-coding them.

These files can contain exact binary data fields. This is possible because — since
there is no character sequence that constitutes an end-of-record delimiter — the
contents of record fields are irrelevant to the reading process.

"ORGANIZATION RELATIVE"

The contents of these files consist of a series of fixed-length data records prefixed
with a four-byte record header. The record header contains the length of the data,
in bytes. The byte-count does not include the four-byte record header.

Records in this type of file are all the same physical length. If variable-length logical
records are defined to the program, the space occupied by each physical record in
the file will occupy the maximum possible space, and the logical record length field
will contain the number of bytes of data in the record that are actually in use.

This file organization was defined to accommodate either sequential or random pro-
cessing. With a "RELATIVE" file, it is possible to read or write record 100 directly,

31 May 2018 Chapter 2 - Cobol Fundamentals

16

GnuCOBOL 3.0 rcl [03May2018] Programmer’s Guide

without having to have first read or written records 1-99. The GnuCOBOL runtime
system uses the program-defined maximum record size to calculate a relative byte
position in the file where the record header and data begin, and then transfers the
necessary data to or from the program.

When the file is written by a GnuCOBOL program, no delimiter sequence is ap-
pended to the data, but a record-length field is added to the beginning of each
physical record.

When the file is read, the data is transferred into the program exactly as it exists
in the file.

Care must be taken that programs reading such a file describe records whose length
is exactly the same as that used by the programs that created the file. It won’t
end well if the GnuCOBOL runtime library interprets a four-byte ASCII character
string as a record length when it transfers data from the file into the program!

Suggestion: use a copybook to describe the record layouts of any file; this guarantees
that multiple programs accessing that file will "see" the same record sizes and layouts
by coding a "COPY" statement (see [COPY], page 65) to import the record layout(s)
rather than hand-coding them.

These files can contain exact binary data fields. The contents of record fields are
irrelevant to the reading process as there is no end-of-record delimiter.

"ORGANIZATION INDEXED"

This is the most advanced file structure available to GnuCOBOL programs. It’s not
possible to describe the physical structure of such files because that structure will
vary depending upon which advanced file-management facility was included into the
GnuCOBOL build you will be using (Berkeley Database [BDB], VBISAM, etc.). We
will — instead — discuss the logical structure of the file.

There will be multiple structures stored for an "INDEXED" file. The first will be a
data component, which may be thought of as being similar to the internal structure
of a relative file. Data records may not, however, be directly accessed by their
record number as would be the case with a relative file, nor may they be processed
sequentially by their physical sequence in the file.

The remaining structures will be one or more index components. An index com-
ponent is a data structure that (somehow) enables the contents of a field, called a
primary key, within each data record (a customer number, an employee number, a
product code, a name, etc.) to be converted to a record number so that the data
record for any given primary key value can be directly read, written and/or deleted.
Additionally, the index data structure is defined in such a manner as to allow the
file to be processed sequentially, record-by-record, in ascending sequence of the pri-
mary key field values. Whether this index structure exists as a binary-searchable
tree structure (b-tree), an elaborate hash structure or something else is pretty much
irrelevant to the programmer — the behaviour of the structure will be as it was
just described. The actual mechanism used will depend upon the advanced file-
management package was included into your GnuCOBOL implementation when it
was built.

Chapter 2 - Cobol Fundamentals 31 May 2018

GnuCOBOL 3.0 rcl [03May2018] Programmer’s Guide 17

The runtime system will not allow two records to be written to an indexed file with
the same primary key value.

The capability exists for an additional field to be defined as what is known as an
alternate key. Alternate key fields behave just like primary keys, allowing both direct
and sequential access to record data based upon the alternate key field values, with
one exception. That exception is the fact that alternate keys may be allowed to
have duplicate values, depending upon how the alternate key field is described to
the GnuCOBOL compiler.

There may be any number of alternate keys, but each key field comes with a disk
space penalty as well as an execution time penalty. As the number of alternate key
fields increases, it will take longer and longer to write and/or modify records in the
file.

These files can contain exact binary data fields. The contents of record fields are
irrelevant to the reading process as there is no end-of-record delimiter.

All files are initially described to a GnuCOBOL program using a "SELECT" statement (see
[SELECT], page 101). In addition to defining a name by which the file will be referenced within
the program, the "SELECT" statement will specify the name and path by which the file will be
known to the operating system along with its organization, locking and sharing attributes.

A file description in the "FILE SECTION" (see [FILE SECTION], page 120) will define the
structure of records within the file, including whether or not variable-length records are possible
and — if so — what the minimum and maximum length might be. In addition, the file description
entry can specify file I/O block sizes.

2.1.9. Table Handling

Other programming languages have arrays, COBOL has tables. They’re basically the same
thing. There are two special statements that exist in the COBOL language — "SEARCH" (see
[SEARCH], page 341) and "SEARCH ALL" (see [SEARCH ALL], page 343) — that make finding
data in a table easy.

The first can search a table sequentially, stopping only when either a table entry matching one
of any number of search conditions is found, or when all table entries have been checked against
the search criteria and none matched any of those criteria.

The second can perform an extremely fast search against a table sorted by and searched against
a key field contained in each table entry. The algorithm used for such a search is a binary
search (also known as a half-interval search). This algorithm ensures that only a small number
of entries in the table need to be checked in order to find a desired entry or to determine that
the desired entry doesn’t exist in the table. The larger the table, the more effective this search
becomes. For example, a binary search of a table containing 32,768 entries will be able to
locate a particular entry or determine the entry doesn’t exist by looking at no more than fifteen
(15) entries! The algorithm is explained in detail in the documentation of the "SEARCH ALL"
statement (see [SEARCH ALLJ, page 343).

Finally, COBOL has the ability to perform in-place sorts of the data that is found in a table.

31 May 2018 Chapter 2 - Cobol Fundamentals

18 GnuCOBOL 3.0 rcl [03May2018] Programmer’s Guide

2.1.10. Sorting and Merging Data

The COBOL language includes a powerful "SORT" statement (see [SORT], page 354) that can
sort large amounts of data according to arbitrarily complex key structures. This data may
originate from within the program or may be contained in one or more external files. The
sorted data may be written automatically to one or more output files or may be processed,
record-by-record in the sorted sequence.

A companion statement — "MERGE" (see [MERGE], page 313) — can combine the contents of
multiple files together, provided those files are all pre-sorted in a similar manner according to
the same key structure. The resulting output will consist of the contents of all of the input
files, merged together and sequenced according to the common key structure(s). The output
generated by a "MERGE" statement may be written automatically to one or more output files or
may be processed internally by the program.

A special form of the "SORT" statement also exists just to sort the data that resides in a table.
This is particularly useful if you wish to use "SEARCH ALL" against the table.

2.1.11. String Manipulation Features

There have been programming languages designed specifically for the processing of text strings,
and there have been programming languages designed for the sole purpose of performing high-
powered numerical computations. Most programming languages fall somewhere in the middle.

COBOL is no exception, although it does include some very powerful string manipulation capa-
bilities; GnuCOBOL actually has even more string-manipulation capabilities than many other
COBOL implementations. The following summarizes GnuCOBOL’s string-processing capabili-
ties:

Concatenate two or more strings:

e "CONCATENATE" intrinsic function (see [CONCATENATE], page 392).
e "STRING" statement (see [STRING], page 364).

Conversion of a numeric time or date to a formatted character string:

e "LOCALE-TIME" intrinsic function (see [LOCALE-TIME], page 424).
e "LOCALE-DATE" intrinsic function (see [LOCALE-DATE], page 423).

Convert a binary value to its corresponding character in the program’s character set:

e "CHAR" intrinsic function (see [CHAR], page 390). Add 1 to argument before invoking the
function; the description of the "CHAR" intrinsic function presents a technique utilizing the
"MOVE" statement that will accomplish the same thing without the need of adding 1 to the
numeric argument value first.

Convert a character string to lower-case:

e "LOWER-CASE" intrinsic function (see LOWER-CASE], page 428).
e "C$TOLOWER" built-in system subroutine (see [C$TOLOWER], page 508).
e "CBL_TOLOWER" built-in system subroutine (see [CBL_.TOLOWER], page 548).

Chapter 2 - Cobol Fundamentals 31 May 2018

GnuCOBOL 3.0 rcl [03May2018] Programmer’s Guide 19

Convert a character string to upper-case:

e "UPPER-CASE" intrinsic function (see [UPPER-CASE], page 481).
e "C$TOUPPER" built-in system subroutine (see [C$TOUPPER], page 509).
e "CBL_TOUPPER" built-in system subroutine (see [CBL_.TOUPPER], page 548).

Convert a character string to only printable characters:

e "C$PRINTABLE" built-in system subroutine (see [CSPRINTABLE], page 506).

Convert a character to its numeric value in the program’s character set:

e "ORD" intrinsic function (see [ORD], page 453). Subtract 1 from the result; the description
of the "ORD" intrinsic function presents a technique utilizing the "MOVE" statement that will
accomplish the same thing without the need of adding 1 to the numeric argument value
first.

Count occurrences of sub strings in a larger string:

e "INSPECT" statement (see [[INSPECT], page 308) with the "TALLYING" clause.

Decode a formatted numeric string back to a numeric value:

e "NUMVAL" intrinsic function (see [NUMVALJ, page 447).
e "NUMVAL-C" intrinsic function (see [NUMVAL-C], page 450).

Determine the length of a string or data-item capable of storing strings:

e "LENGTH" intrinsic function (see LENGTH], page 420).
e "BYTE-LENGTH" intrinsic function (see [BYTE-LENGTH], page 389).

Extract a sub string from a string based on its starting character position and length:

e Use of a reference modifier on the string field - See [Reference Modifiers|, page 40.

Format a numeric item for output, including thousands-separators ("," in the USA), currency
symbols ("$" in the USA), decimal points, credit/Debit Symbols, Leading Or Trailing Sign
Characters:

e "MOVE" statement (see [MOVE], page 316) with picture-symbol editing applied to the re-
ceiving field:

Justification (left, right or centred) of a string field:

e "C$JUSTIFY" built-in system subroutine (see [C3JUSTIFY], page 502).

Monoalphabetic substitution of one or more characters in a string with different characters:

e "INSPECT" statement (see [INSPECT], page 308) with the "CONVERTING".

31 May 2018 Chapter 2 - Cobol Fundamentals

20 GnuCOBOL 3.0 rcl [03May2018] Programmer’s Guide

e "TRANSFORM" statement (see [TRANSFORM], page 373).
e "SUBSTITUTE" intrinsic function (see [SUBSTITUTE], page 470).
e "SUBSTITUTE-CASE" intrinsic function (see [SUBSTITUTE-CASE], page 471).

Parse a string, breaking it up into sub strings based upon one or more delimiting character
sequences’:

e "UNSTRING" statement (see [UNSTRING], page 375).

Removal of leading or trailing spaces from a string:

e "TRIM" intrinsic function (see [TRIM], page 480).

Substitution of a single sub string with another of the same length, based upon the sub strings
starting character position and length:

e "MOVE" statement (see [MOVE], page 316) with a reference modifier on the "receiving" field
(see [Reference Modifiers|, page 40).

Substitution of one or more sub strings in a string with replacement sub strings of the same
length, regardless of where they occur:

e "INSPECT" statement (see [INSPECT], page 308) with a "REPLACING" clause.
e "SUBSTITUTE" intrinsic function (see [SUBSTITUTE], page 470).
e "SUBSTITUTE-CASE" intrinsic function (see [SUBSTITUTE-CASE], page 471).

Substitution of one or more sub strings in a string with replacement sub strings of a potentially
different length, regardless of where they occur:

e "SUBSTITUTE" intrinsic function (see [SUBSTITUTE], page 470).
e "SUBSTITUTE-CASE" intrinsic function (see [SUBSTITUTE-CASE], page 471).

2.1.12. Screen Formatting Features

The COBOL2002 standard formalizes extensions to the COBOL language that allow for the
definition and processing of text-based screens, as is a typical function on mainframe and mid-
frame computers as well as on many point-of-sale (i.e. "cash register") systems. GnuCOBOL
implements virtually all the screen-handling features described by COBOL2002.

These features allow fields to be displayed at specific row/column positions, various colors and
video attributes to be assigned to screen fields and the pressing of specific function keys (F1, F2,
.. .) to be detectable. All of this takes place through the auspices of the "SCREEN SECTION" (see
[SCREEN SECTION], page 140) and special formats of the "ACCEPT" statement (see [ACCEPT],
page 243) and the "DISPLAY" statement (see [DISPLAY], page 275).

The COBOL2002 standard, and therefore GnuCOBOL, only covers textual user interface (TUI)
screens (those comprised of ASCII characters presented using a variety of visual attributes) and
not the more-advanced graphical user interface (GUI) screen design and processing capabilities

These delimiters may be single characters, multiple-character strings or multiple consecutive occurrences of either

Chapter 2 - Cobol Fundamentals 31 May 2018

GnuCOBOL 3.0 rcl [03May2018] Programmer’s Guide 21

built into most modern operating systems. There are subroutine-based packages available that
can do full GUI presentation — most of which may be called by GnuCOBOL programs, with

a moderate research time investment (Tcl/Tk, for example) — but none are currently included
with GnuCOBOL.

2.1.12.1. A Sample Screen

A Sample Screen Produced by a GnuCOBOL Program:

~ GNU COBOL Camp = |

I GCic (2013/12/26 10:16) GNU COROL 2.1 23NOV2013 Interactive Compilation

|
| Filename: mathtest.cbl
Folder: E:\Programs\Samples

Set/Clr Switches Via F1-F9; Set Config Via F12; ENTER Key Compiles; ESC Quits

Assume WITH DERUGGING MODE F& >"FUNCTION" Is Optional Current
Procedure+Statement Trace Enable A1l Warnings Config:
Make a Library (DLL) Source Is Free-Format DEFAULT
Execute If Compilation OK No COMP/BINARY Truncation

Produce Full Listing

Extra "cobc” Switches, If Any ("-save-temps=xxx" Prevents Listings):

e

Program Execution Arguments, If Any:

|

GCic for Windows/MinGW Copyright (C) 2009-2013, Gary L. Cutler, GPL

The above screen was produced by the GnuCOBOL Interactive Compiler, or GCic. See Section
“GCic” in GnuCOBOL Sample Programs, for the source and cross-reference listing of this
program.

Screens are defined in the screen section of the data division. Once defined, screens are used at
run-time via the "ACCEPT" and "DISPLAY" statements.

2.1.12.2. Color Palette and Video Attributes

GnuCOBOL supports the following visual attribute specifications in the "SCREEN SECTION" (see
[SCREEN SECTION], page 140):

Color

Eight (8) different colors may be specified for both the background (screen) and
foreground (text) color of any row/column position on the screen. Colors are spec-
ified by number, although a copybook supplied with all GhnuCOBOL distributions
("screenio.cpy") defines COB-COLOR-xxxxxx names for the various colors so they
may be specified as a more meaningful name rather than a number. The eight colors,
by number, with the constant names defined in screenio.cpy, are as follows:

31 May 2018 Chapter 2 - Cobol Fundamentals

22 GnuCOBOL 3.0 rcl [03May2018] Programmer’s Guide

Black: COB-COLOR-BLACK

Blue: COB-COLOR-BLUE

Green: COB-COLOR-GREEN

Cyan (Turquoise): COB-COLOR-CYAN
Red: COB-COLOR-RED

Magenta: COB-COLOR-MAGENTA
Yellow: COB-COLOR-YELLOW

7. White: COB-COLOR-WHITE
Text Brightness

A A B T

There are three possible brightness levels supported for text — lowlight (dim),
normal and highlight (bright). Not all GnuCOBOL implementations will support
all three (some treat lowlight the same as normal). The deciding factor as to whether
two or three levels are supported lies with the version of the "curses" package that is
being used. This is a utility screen-10 package that is included into the GnuCOBOL
run-time library when the GnuCOBOL software is built.

As a general rule of thumb, Windows implementations support two levels while Unix
ones support all three.

Blinking

This too is a video feature that is dependent upon the "curses" package built into
your version of GnuCOBOL. If blinking is enabled in that package, text displayed
in fields defined in the screen section as being blinking will endlessly cycle between
the brightest possible setting (highlight) and an "invisible" setting where the text
color matches that of the field background color. A Windows build, which generally
uses the "pcurses" package, will uses a brighter-than-normal background color to
signify "blinking".

Reverse Video

This video attribute simply swaps the foreground and background colors and display
options.

Field Outlining

It is possible, if supported by the "curses" package being used, to draw borders on
the top, left and/or bottom edges of a field.

Secure Input

If desired, screen fields used as input fields may defined as "secure" fields, where each
input character (regardless of what was actually typed) will appear as an asterisk (*)
character. The actual character whose key was pressed will still be stored into the
field in the program, however. This is very useful for password or account number
fields.

Prompt Character

Input fields may have any character used as a fill character. These fill characters
provide a visual indication of the size of the input field, and will automatically be

Chapter 2 - Cobol Fundamentals 31 May 2018

GnuCOBOL 3.0 rcl [03May2018] Programmer’s Guide 23

transformed into spaces when the input field is processed by the program. If no
such character is defined for an input field, an underscore ("_") will be assumed.

The following is a sample of the GnuCOBOL color Palette, showing all possible combinations of
the various video attributes. This example was prepared on a Macintosh running OSX Mavericks
(10.9). Blinking works — the screen snapshot shows things in mid blink, when the text and
background colors are momentarily the same. Unfortunately, only two screen intensities are
available (like Windows, the "lowlight" setting is the same as the default).

The GnuCOBOL Color Palette and Video Options::

® 00 2013-11-23-2.1 — bash — 65x26 e

(Press ENTER when done)
LOWLIGHT HIGHLIGHT LOWLIGHT

REVERSE REVERSE
01234567 01234567 01234567 01234567 01234567 01224567

vy

LS
L
L

S8 ¢

$:

x|
<<
-+

< oK

L

<K

o
;9

P
L
s
o
o
Lo

<
¢ 2
S

o
o
et
o
g
o

<
<
o
2

<o
.
e
&

<
.2
S

ot
Pt
et
ot
g
A
L

OCOOOC OOOOOC OO

SO WNRO
X

SOV WwNRE O
R

SO U R W N = O
L
& ¢

-

WV W RO

:
-

X X
X X
X X
X X
X 4 X
X X
X X
DOCCOOC IPOCTO0

LOWLIGHT HIGHLIGHT LOWLIGHT HIGHLIGHT
BLINK BLINK

REVERSE REVERSE REVERSE

01234567 01234567 01234567 01234567 01234567 01234567

The rows of each block are numbered with the background color while columns are numbered
with the foreground color.

YU W N O
G W N O
~J G W N O
SOV REWNREO
SOV WNRE O
~S PR REWNRE O

See Section “Colors” in GnuCOBOL Sample Programs, for a source and cross-reference listing
of the program (Colors.cbl) that produced the above screen.

2.1.13. Report Writer Features

GnuCOBOL includes an implementation of the Report Writer Control System, or RWCS. The
reportwriter module is now fully implemented as of version 3.0. This is a standardized, optional
add-on feature to the COBOL language which automates much of the mechanics involved in the
generation of printed reports by:

1. Controlling the pagination of reports, including:

A. The automatic production of a one-time notice on the first page of the report (report
heading).

31 May 2018 Chapter 2 - Cobol Fundamentals

24 GnuCOBOL 3.0 rcl [03May2018] Programmer’s Guide

B. The production of zero or more header lines at the top of every page of the report
(page heading).

C. The production of zero or more footer lines at the bottom of every page of the report
(page footing).

D. The automatic numbering of printed pages.
E. The formatting of those report lines that make up the main body of the report (detail).

F. Full awareness of where the "pen" is about to "write" on the current page, automat-
ically forcing an eject to a new page, along with the automatic generation of a page
footer to close the old page and/or a page header to begin the new one.

G. The production of a one-time notice at the end of the last page of a report (report
footing).

2. Performing special reporting actions based upon the fact that the data being used to gen-
erate the report has been sorted according to one or more key fields:

A. Automatically suppressing the presentation of one or more fields of data from the detail
group when the value(s) of the field(s) duplicate those of the previously generated detail
group. Fields such as these are referred to as group-indicate fields.

B. Automatically causing suppressed detail group-indicate fields to re-appear should a
detail group be printed on a new page.

C. Recognizing when control fields on the report — fields tied to those that were used as
"SORT" statement (see [SORT], page 354) keys — have changed. This is known as a
control break. The RWCS can automatically perform the following reporting actions
when a control break occurs:

e Producing a footer, known as a control footing after the detail lines that shared
the same old value for the control field.

e Producing a header, known as a control heading before the detail lines that share
the same new value for the control field.

3. Perform data summarise, as follows:

A. Automatically generating subtotals in control and/or report footings, summarizing
values of any fields in the detail group.

B. Automatically generating crossfoot totals in detail groups. These would be sums of
two or more values presented in the detail group.

The "REPORT SECTION" (see [REPORT SECTION], page 132) documentation explores the de-
scription of reports and the "PROCEDURE DIVISION" (see [PROCEDURE DIVISION], page 223)
chapter documents the various language statements that actually produce reports. Before read-
ing these, you might find it helpful to read [Report Writer Usage Notes|, page 557, which is
dedicated to putting the pieces together for you.

2.1.14. Data Initialization

There are three ways in which data division data gets initialized.

1. When a program or subprogram is first executed, much of the data in it’s data division will
be initialized as follows:

Chapter 2 - Cobol Fundamentals 31 May 2018

GnuCOBOL 3.0 rcl [03May2018] Programmer’s Guide 25

e Alphanumeric and alphabetic (i.e. text) data items will be initialized to "SPACES".
e Numeric data items will be initialized to a value of "ZERO".

e Data items with an explicit "VALUE" (see [VALUE], page 220) clause in their definition
will be initialized to that specific value.

The various sections of the data division each have their own rules as to when the actions
described above will occur — consult the documentation on those sections for additional
information.

These default initialization rules can vary quite substantially from one COBOL implemen-
tation to another. For example, it is quite common for data division storage to be initialized
to all binary zeros except for those data items where "VALUE" clauses are present. Take care
when working with applications originally developed for another COBOL implementation
to ensure that GnuCOBOL’s default initialization rules won’t prove disruptive.

2. A programmer may use the "INITIALIZE" statement (see [INITIALIZE|, page 303) to
initialise any group or elementary data item at any time. This statement provides far more
initialization options than just the simple rules stated above.

3. When the "ALLOCATE" statement (see [ALLOCATE], page 261) statement is used to allocate
a data item or to simply allocate an area of storage of a size specified on the "ALLOCATE",
that allocation may occur with or without initialization, as per the programmer’s needs.

2.1.15. Syntax Diagram Conventions

Syntax of the GnuCOBOL language will be described in special "syntax diagrams" using the
following syntactical-description techniques:

MANDATORY-RESERVED-WORD

Reserved words of the COBOL language will appear in UPPER-CASE. When they
appear underlined, as this one is, they are required reserved words.

OPTIONAL-RESERVED-WORD

When reserved words appear without underlining, as this one is, they are optional;
such reserved words are available in the language syntax merely to improve read-
ability — their presence or absence has no effect upon the program.

ABBREVIATION

When only a portion of a reserved word is underlined, it indicates that the word
may either be coded in its full form or may be abbreviated to the portion that is
underlined.

substitutable-items

Generic terms representing user-defined substitutable items will be shown entirely
in lower-case in syntax diagrams. When such items are referenced in text, they will
appear as <substitutable-items>.

31 May 2018 Chapter 2 - Cobol Fundamentals

26

GnuCOBOL 3.0 rcl [03May2018] Programmer’s Guide

Complex-Syntax-Clause

{ xxxxxx }

yyyyyy }
{ zzzzzz }

~

| xxxxxx |

| yyyyyy |
| zzzzzz |

{1}

Items appearing in Mixed Case within a syntax diagram represent complex clauses
of other syntax elements that may appear in that position. Some COBOL syntax
gets quite complicated, and using a convention such as this significantly reduces the
complexity of a syntax diagram. When such items are referenced in text, they will
appear as <<Complex-Syntaz-Clause>>.

Square bracket meta characters on syntax diagrams document language syntax that
is optional. The [] characters themselves should not be coded. If a syntax diagram
contains "a [b] c¢", the "a" and "c¢" syntax elements are mandatory but the "b"
element is optional.

Vertical bar meta characters on syntax diagrams document simple choices. The |
character itself should not be coded. If a syntax diagram contains "alblc", exactly
one of the items "a", "b" or "c¢" must be selected.

A vertical list of items, bounded by multiple brace characters, is another way of
signifying a choice between a series of items where exactly one item must be selected.
This form is used to show choices when one or more of the selections is more complex
than just a single word, or when there are too many choices to present horizontally
with " |" meta characters.

A vertical list of items, bounded by multiple vertical bar characters, signifies a choice
between a series of items where one or more of the choices could be selected.

The ... meta character sequence signifies that the syntax element immediately pre-
ceding it may be repeated. The ... sequence itself should not be coded. If a syntax
diagram contains "a b... c", syntax element "a" must be followed by at least one
"b" element (possibly more) and the entire sequence must be terminated by a "c"
syntax element.

The braces ({}) meta characters may be used to group a sequence of syntax elements
together so that they may be treated as a single entity. The {} characters themselves
should not be coded. These are typically used in combination with the "|" or "..."
meta characters.

Chapter 2 - Cobol Fundamentals 31 May 2018

GnuCOBOL 3.0 rcl [03May2018] Programmer’s Guide 27

§~O—t=:"2<,>./

Any of these characters appearing within a syntax diagram are to be interpreted
literally, and are characters that must be coded — where allowed — in the statement
whose format is being described. Note that a "." character is a literal character that
must be coded on a statement whereas a "..." symbol is the meta character sequence
described above.

2.1.16. Format of Program Source Lines

Prior to the COBOL2002 standard, source statements in COBOL programs were structured
around 80-column punched cards. This means that each source line in a COBOL program
consisted of five different "areas", defined by their column number(s).

As of the COBOL2002 standard, a second mode now exists for COBOL source code statements
— in this mode of operation, COBOL statements may each be up to 255 characters long, with
no specific requirements as to what should appear in which columns.

Of course, in keeping with the long-standing COBOL tradition of maintaining backwards com-
patibility with older standards, programmers (and, of course, compliant COBOL compilers) are
capable of working in either mode. It is even possible to switch back and forth in the same
program. The terms ’Fized Format Mode’ and ’Free Format Mode are used to refer to these
two modes of source code formatting.

The GnuCOBOL compiler (cobc) supports both of these source line format modes, defaulting
to Fixed Format Mode lacking any other information.

The compiler can be instructed to operate in either mode in any of the following four ways:

1. Using a compiler option switch — use the "-fixed" switch to start in Fixed Format Mode
(remember that this is the default) or the "-free" switch to start in Free Format Mode.

2. You may use the "SOURCEFORMAT AS FIXED" and "SOURCEFORMAT AS FREE" clauses of the
">>SET" CDF directive (see [>>SET], page 73) within your source code to switch to Fixed
or Free Format Mode, respectively.

3. You may use the ">>FORMAT IS FIXED" and "FORMAT IS FREE" clauses of the ">>DEFINE"
CDF directive (see [>>DEFINE], page 70) within your source code to switch to Fixed or
Free Format Mode, respectively.

4. You may use the ">>SOURCE" CDF directive (see [>>SOURCE], page 74) to switch to Free
Format Mode (">>SOURCE FORMAT IS FREE") or Fixed Format Mode (">>SOURCE FORMAT
IS FIXED".

Using methods 2-4 above, you may switch back and forth between the two formats at will.

The last three options above are all equivalent; all three are supported by GnuCOBOL so that
source code compatibility may be maintained with a wide variety of other COBOL implementa-
tions. With all three, if the compiler is currently in Fixed Format Mode, the ">>" must begin in
column 8 or beyond, provided no part of the directive extends past column 72. If the compiler
is currently in Free Format Mode, the ">>" may appear in any column, provided no part of the
directive extends past column 255.

31 May 2018 Chapter 2 - Cobol Fundamentals

28 GnuCOBOL 3.0 rcl [03May2018] Programmer’s Guide

Depending upon which source format mode the compiler is in, you will need to follow vari-
ous rules for the format mode currently in effect. These rules are presented in the upcoming
paragraphs.

The following discussion presents the various components of every GnuCOBOL source line record
when the compiler is operating in Fixed Format Mode. Remember that this is the default mode
for the GnuCOBOL compiler.

1-6 - Sequence Number Area

Historically, back in the days when punched-cards were used to submit COBOL
program source to a COBOL compiler, this part of a COBOL statement was reserved
for a six-digit sequence number. While the contents of this area are ignored by
COBOL compilers, it existed so that a program actually punched on 80-character
cards could — if the card deck were dropped on the floor — be run through a card
sorter machine and restored to it’s proper sequence. Of course, this isn’t necessary
today; if truth be told, it hasn’t been necessary for a long time.

See [Marking Changes in Programs|, page 627, for discussion of a valuable use to
which the sequence number area may be put today.

7 - Indicator Area

Column 7 serves as an indicator in which one of five possible values will appear —

space, "D" (or "d"), "-" (dash), "/" or "*". The meanings of these characters are
as follows:
space

No special meaning — this is the normal character that will appear in

this area.
D/d
The line contains a valid GnuCOBOL statement that is normally treated
as a comment unless the program is being compiled in debugging mode.
*

The line is a comment.

The line is a comment that will also force a page eject in the compilation
listing. While GnuCOBOL will honour such a line as a comment, it will
not form-feed any generated listing.

The line is a continuation of the previous line. These are needed only
when an alphanumeric literal (quoted character string), reserved word
or user-defined word are being split across lines.

Chapter 2 - Cobol Fundamentals 31 May 2018

GnuCOBOL 3.0 rcl [03May2018] Programmer’s Guide 29

8-11 - Area "A"

Language DIVISION, SECTION and paragraph section headers must begin in Area
A, as must the level numbers 01, 77 in data description entries and the "FD" and
"SD" file and SORT description headers.

12-72 - Area "B"

All other COBOL programming language components are coded in these columns.

73-80 - Program Name Area

This is another obsolete area of COBOL statements. This part of every statement
also hails back to the day when programs were punched on cards; it was expected
that the name of the program (or at least the first 8 characters of it) would be
punched here so that — if a dropped COBOL source deck contained more than
one program — that handy card sorter machine could be used to first separate the
cards by program name and then sort them by sequence number. Today’s COBOL
compilers (including GnuCOBOL) simply ignore anything past column 72.

See [Marking Changes in Programs|, page 627, for discussion of a valuable use to
which the program name area may be put today.

31 May 2018 Chapter 2 - Cobol Fundamentals

30 GnuCOBOL 3.0 rcl [03May2018] Programmer’s Guide

2.1.17. Program Structure

[Complete GnuCOBOL Program Syntax

[IDENTIFICATION DIVISION.]

PROGRAM-ID|FUNCTION-ID. name-1 [Program-Options]

[SOURCE-COMPUTER. Compilation-Computer-Specification . 1]
[OBJECT-COMPUTER. Execution-Computer-Specification . 1]

[REPOSITORY. Function-Specification... .]

[SPECIAL-NAMES. Program-Configuration-Specification .]

[FILE-CONTROL. General-File-Description... .]

[I-0O-CONTROL. File-Buffering-Specification... .]

[FILE SECTION. Detailed-File-Description... .]

[WORKING-STORAGE SECTION. Permanent-Data-Definition... .]

[LOCAL-STORAGE SECTION. Temporary-Data-Definition... .]

[LINKAGE SECTION. Subprogram-Argument-Description... .]
[REPORT SECTION. Report-Description... .]

[SCREEN SECTION. Screen-Layout-Definition... .]

}
””””””””””””””””” { }
}

[RETURNING identifier-1]

[Event-Handler-Routine... .]
[END DECLARATIVES.]

Chapter 2 - Cobol Fundamentals 31 May 2018

GnuCOBOL 3.0 rcl [03May2018] Programmer’s Guide 31

General-Program-Logic
[Nested-Subprogram...]
[END PROGRAM|FUNCTION name-1]

Each program consists of up to four ’Divisions’ (major groupings of sections, paragraphs and
descriptive or procedural coding that all relate to a common purpose), named Identification,
Environment, Data and Procedure.

1. Not all divisions are needed in every program, but they must be specified in the order shown
when they are used.

2. The following points pertain to the identification division

e The "IDENTIFICATION DIVISION." header is always optional.

3. The following points pertain to the environment division:

e If both optional sections of this division are coded, they must be coded in the sequence
shown.

e Each of these sections consists of a series of specific paragraphs ("SOURCE-COMPUTER"
and "OBJECT-COMPUTER", for example). Each of these paragraphs serves a specific
purpose. If no code is required for the purpose one of the paragraphs serves, the entire
paragraph may be omitted.

e If none of the paragraphs within one of the sections are coded, the section header itself
may be omitted.

e The paragraphs within each section may only be coded in that section, but may be
coded in any order.

e If none of the sections within the environment division are coded, the "ENVIRONMENT
DIVISION." header itself may be omitted.

4. The following points pertain to the data division:

e The data division consists of six optional sections — when used, those sections must
be coded in the order shown in the syntax diagram.

e FEach of these sections consists of code which serves a specific purpose. If no code is
required for the purpose one of those sections serves, the entire section, including it’s
header, may be omitted.

e If none of the sections within the data division are coded (a highly unlikely, but theo-
retically possible circumstance), the "DATA DIVISION." header itself may be omitted.

5. The following points pertain to the procedure division:

e As with the other divisions, the procedure division may consist of sections and those
sections may — in turn — consist of paragraphs. Unlike the other divisions, however,
section and paragraph names are defined by the programmer, and there may not be
any defined at all if the programmer so wishes.

e FEach Event-Handler-Routine will be a separate section devoted to trapping a particular

31 May 2018 Chapter 2 - Cobol Fundamentals

32 GnuCOBOL 3.0 rcl [03May2018] Programmer’s Guide

run-time event. If there are no such sections coded, the "DECLARATIVES." and "END
DECLARATIVES." lines may be omitted.

6. A single file of COBOL source code may contain:

e A portion of a program; these files are known as copybooks

e A single program. In this case, the "END PROGRAM" or "END FUNCTION" statement is
optional.

e Multiple programs, separated from one another by "END PROGRAM" or "END FUNCTION"
statements. The final program in such a source code file need not have an "END
PROGRAM" or "END FUNCTION" statement.

7. Subprogram "B" may be nested inside program "A" by including program B’s source code
at the end of program A’s procedure division without an intervening "END PROGRAM A."
or "END FUNCTION A." statement. For now, that’s all that will be said about nesting. See
[Independent vs Contained vs Nested Subprograms|, page 609, for more information.

8. Regardless of how many programs comprise a single GnuCOBOL source file, only a single
output executable program will be generated from that source file when the file is compiled.

2.1.18. Comments

The following information describes how comments may be embedded into GnuCOBOL program
source to provide documentation.

Comment Type Source Mode — Description
Blank Lines FIXED — Blank lines may be inserted as desired.

FREE — Blank lines may be inserted as desired.

Full-line FIXED — An entire source line will be treated as a comment (and
comments will be ignored by the compiler) by coding an asterisk ("*") in
column seven (7).

FREE — An entire source line will be treated as a comment (and
will be ignored by the compiler) by coding the sequence "*>",
starting in any column, as the first non-blank characters on the

line.
Full-line FIXED — An entire source line will be treated as a comment by
comments with coding a slash ("/") in column seven (7). Many COBOL compilers
form-feed will also issue a form-feed in the program listing so that the "/"

line is at the top of a new page. The GnuCOBOL compiler does
not support this form-feed behaviour.

The GnuCOBOL Interactive Compiler, or GCic, does support this
form-feed behaviour when it generates program source listings! See
Section “GCic” in GnuCOBOL Sample Programs, for the source
and cross-reference listing (produced by GCic) of this program —
you can see the effect of "/" there.

FREE — There is no Free Source Mode equivalent to "/".

Chapter 2 - Cobol Fundamentals 31 May 2018

GnuCOBOL 3.0 rcl [03May2018] Programmer’s Guide 33

Partial-line FIXED — Any text following the character sequence "*>" on a
comments source line will be treated as a comment. The "*" must appear in
column seven (7) or beyond.

FREE — Any text following the character sequence "*>" on a
source line will be treated as a comment. The "*" may appear in
any column.

Comments that FIXED — By coding a "D" in column 7 (upper- or lower-case),
may be treated an otherwise valid GnuCOBOL source line will be treated as a
as code, typi- comment by the compiler.

cally for debug-

; FREE — By specifying the character sequence ">>D" (upper-
ging purposes

or lower-case) as the first non-blank characters on a source line,
an otherwise valid GnuCOBOL source line will be treated as a
comment by the compiler.

Debugging statements may be compiled either by specify-
ing the "-fdebugging-line" switch on the GnuCOBOL com-
piler or by adding the "WITH DEBUGGING MODE" clause to the
"SQURCE-COMPUTER" paragraph.

2.1.19. Literals

Literals are constant values that will not change during the execution of a program. There are
two fundamental types of literals — numeric and alphanumeric.

2.1.19.1. Numeric Literals

A numeric literal is a numeric constant which may be used as an array subscript, as a value
in arithmetic expressions, or in any procedural statement where a numeric value may be used.
Numeric literals may take any of the following forms:

e Integers such as 1, 56, 2192 or -54.
e Non-integer fixed point values such as 1.317 or -2.95.

e Floating-point values using "Enn" notation such as 9.92E25, representing 9.92 x 10725 (10
raised to the 25th power) or 5.7E-14, representing 5.7 x 10°-14 (10 raised to the -14th
power). Both the mantissa (the number before the E) and the exponent (the number after
the E) may be explicitly specified as positive (with a +), negative (with a -) or unsigned
(and therefore implicitly positive). A floating-point literals value must be within the range
-1.7 x 107308 to +1.7 x 107308 with no more than 15 decimal digits of precision.

e Hexadecimal numeric literals such as H"1F" (31 decimal), h’22’ (34 decimal) or HHDEAD’
(57005 decimal). The H character may either be upper- or lower-case and either single quote
(’) or double-quote (") characters may be used in a hexadecimal literal, provided both aren’t
used in the same literal. Hexadecimal numeric literals are limited to a maximum of sixteen
hexadecimal digits (a 64-bit value).

2.1.19.2. Alphanumeric Literals

An alphanumeric literal is a character string suitable for display on a computer screen, printing
on a report, transmission through a communications connection or storage in alphanumeric or
alphabetic data items.

31 May 2018 Chapter 2 - Cobol Fundamentals

34 GnuCOBOL 3.0 rcl [03May2018] Programmer’s Guide

An alphanumeric literal is not valid for use in arithmetic expressions unless it is first converted
to it’s numeric computational equivalent; there are three numeric conversion intrinsic functions
built into GnuCOBOL that can perform this conversion — "NUMVAL" (see [NUMVAL]J, page 447),
"NUMVAL-C" (see [NUMVAL-C], page 450) and "NUMVAL-F" (see [NUMVAL-F], page 452).

Alphanumeric literals may take any of the following forms:

e A sequence of characters enclosed by a pair of single-quote () or double-quote (") characters
constitutes a string literal. The double-quote character (") may be used as a data character
within an apostrophe-delimited string literal, and an apostrophe may be used as a data
character within a double-quote-delimited string literal. If an apostrophe character must
be included as a data character within an apostrophe-delimited string literal, express that
character as two consecutive apostrophes (7). If a double-quote character must be included
as a data character within a double-quote-delimited string literal, express that character as
two consecutive double-quotes ("").

e A literal formed according to the same rules as for a string literal (above), but prefixed
with the letter "Z" (upper- or lower-case) constitutes a zero-delimited string literal. These
literals differ from ordinary string literals in that they will be explicitly terminated with
a byte of hexadecimal value 00. These ’'Zero-Delimited Alphanumeric Literals’ are easily
passable to C subprograms, as this is the convention C uses to store character strings.

e A ’Hezadecimal Alphanumeric Literal’ such as X"4A4B4C" (4A4B4C16 = the ASCII string
"JKL), x’20” (an ASCII space) or X’30313233’ (3031323316 = the ASCII string '0123’). The
"X" character may either be upper- or lower-case and either single quote (’) or double-quote
(") characters may be used. These hexadecimal alphanumeric literals should always consist
of an even number of hexadecimal digits, because each character is represented by eight bits
worth of data (2 hex digits). Hexadecimal alphanumeric literals may be of almost unlimited
length.

Alphanumeric literals too long to fit on a single line may be continued to the next line in one of
two ways:

1. If you are using Fixed Format Mode, the alphanumeric literal can be run right up to and
including column 72. The literal may then be continued on the next line anywhere after
column 11 by coding another quote or apostrophe (whichever was used to begin the literal
originally). The continuation line must also have a hyphen (-) coded in the indicator area
(column 7). Here is an example (the scale is just for column number reference):

1 2 3 4 5 6 7
1234567890123456789012345678901234567890123456789012345678901234567890123

01 LONG-LITERAL-VALUE-DEMO PIC X(60) VALUE "This is a long 1
- "ong literal that
" must be continu
— Iled'll‘

2. Regardless of whether the compiler is operating in Fixed or Free Format Mode, GnuCOBOL
allows alphanumeric literals to be broken up into separate fragments. These fragments have
their own beginning and ending quote/apostrophe characters and are "glued together" at
compilation time using "&" characters. No continuation indicator is needed. Here’s an
example:

1 2 3 4 5 6 7
1234567890123456789012345678901234567890123456789012345678901234567890123

01 LONG-LITERAL-VALUE-DEMO PIC X(60) VALUE "This is a" &

Chapter 2 - Cobol Fundamentals 31 May 2018

GnuCOBOL 3.0 rcl [03May2018] Programmer’s Guide 35

" long literal that must " &
"be continued.".

If your program is using Free Format Mode, there’s less need to continue long alphanumeric
literals because statements may be as long as 255 characters.

Numeric literals may be split across lines just as alphanumeric literals are, using either of the
above techniques and both reserved and user-defined words can be split across lines too (using
the first technique). The continuation of numeric literals and user-defined/reserved words is
provided merely to provide compatibility with older COBOL versions and programs, but should
not be used with new programs — it just makes for ugly-looking programs.

2.1.19.3. Figurative Constants

Figurative constants are reserved words that may be used as literals anywhere the figurative
constants value could be interpreted as an arbitrarily long sequence of the characters in question.
When a specific length is required, such as would be the case with an argument to a subprogram,
a figurative constant may not be used. Thus, the following are valid uses of figurative constants:

05 FILLER PIC 9(10) VALUE ZEROS.

MOVE SPACES TO Employee-Name
But this is not:
CALL "SUBPGM" USING SPACES

The following are the GnuCOBOL figurative constants and their respective equivalent values.

"ZERQ"
This figurative constant has a value of numeric 0 (zero). "ZEROS" and "ZEROES" are
both synonyms of "ZERO".

"SPACE"
This figurative constant has a value of one or more space characters. "SPACES" is a
synonym of "SPACE".

IIQUOTEH
This figurative constant has a value of one or more double-quote characters (").
"QUOTES" is a synonym of "QUOTE".

"LOW-VALUE"

This figurative constant has a value of one or more of whatever character oc-
cupies the lowest position in the program’s collating sequence as defined in the
"0BJECT-COMPUTER" (see [OBJECT-COMPUTER], page 88) paragraph or — if no

such specification was made — in whatever default character set the program is
using (typically, this is the ASCII character set). "LOW-VALUES" is a synonym of
"LOW-VALUE".

31 May 2018 Chapter 2 - Cobol Fundamentals

36 GnuCOBOL 3.0 rcl [03May2018] Programmer’s Guide

When the character set in use is ASCII with no collating sequence modifications,
the "LOW-VALUES" figurative constant value is the ASCII "NUL" character. Because
character sets can be redefined, however, you should not rely on this fact — use the
"NULL" figurative constant instead.

"HIGH-VALUE"

This figurative constant has a value of one or more of whatever character occu-
pies the highest position in the program’s collating sequence as defined in the
"OBJECT-COMPUTER" paragraph or — if no such specification was made — in what-
ever default character set the program is using (typically, this is the ASCII character
set). "HIGH-VALUES" is a synonym of "HIGH-VALUE".

"NULL"

A character comprised entirely of zero-bits (regardless of the programs collating
sequence).

Programmers may create their own figurative constants via the "SYMBOLIC CHARACTERS"
(see [Symbolic-Characters-Clause|, page 98) clause of the "SPECIAL-NAMES" (see [SPECIAL-
NAMES], page 90) paragraph.

2.1.20. Punctuation

A comma (",") or a semicolon (";") may be inserted into a GnuCOBOL program to improve
readability at any spot where white space would be legal, except of course within alphanumeric
literals (unless you actually mean for those characters to be part of the alphanumeric literals
value). These characters are always optional.

The use of comma characters can cause confusion to a COBOL compiler if the "DECIMAL POINT
IS COMMA" clause is used in the "SPECIAL-NAMES" (see [SPECIAL-NAMES], page 90) paragraph,
as might be the case in Europe. The following statement, which calls a subroutine passing it
two arguments (the numeric constants 1 and 2):

CALL "SUBROUTINE" USING 1,2

Would — with "DECIMAL POINT IS COMMA" in effect — actually be interpreted as a subroutine
call with 1 argument (the non-integer numeric literal whose value is 1 and 2 tenths). For this
reason, it is best to always follow a comma with a space.

The period character (".") is used to terminate statements in the identification, environment
and data divisions and sentences in the procedure division. Syntax diagrams describing code in
the first three divisions will explicitly show where periods need to occur.

The rules for where and when periods are needed in the procedure division are somewhat com-
plicated. See [Use of Periods], page 54, for the details.

2.1.21. Interfacing to Other Environments

Through the "CALL" statement, COBOL programs may invoke other COBOL programs serving
as subprograms. This is quite similar to cross-program linkage capabilities provided by other
languages. In GnuCOBOL’s case, the "CALL" facility is powerful enough to be tailored to
the point where a GnuCOBOL program can communicate with operating system, database
management and run-time library APIs, even if they weren’t written in COBOL themselves.

Chapter 2 - Cobol Fundamentals 31 May 2018

GnuCOBOL 3.0 rcl [03May2018] Programmer’s Guide 37

See [GnuCOBOL Main Programs CALLing C Subprograms|, page 624, for an example of how
a GnuCOBOL program could invoke a C-language subprogram, passing information back and
forth between the two.

The fact that GnuCOBOL supports a full-featured two-way interface with C-language programs
means that — even if you cannot access a library API directly — you could always do so via a
small C "wrapper" program that is "CALL"ed by a GnuCOBOL program.

31 May 2018 Chapter 2 - Cobol Fundamentals

38 GnuCOBOL 3.0 rcl [03May2018] Programmer’s Guide

2.2. The COBOL Language - Advanced Techniques

2.2.1. Table References

COBOL uses parenthesis to specify the subscripts used to reference table entries (tables in
COBOL are what other programming languages refer to as arrays).

For example, observe the following data structure which defines a 4 column by 3 row grid of
characters:

01 GRID.
05 GRID-ROW OCCURS 3 TIMES.
10 GRID-COLUMN OCCURS 4 TIMES.
15 GRID-CHARACTER PIC X(1).

If the structure contains the following grid of characters:

ABCD
EFGH
I JKL

Then "GRID-CHARACTER (2, 3)" references the "G" and "GRID-CHARACTER (3, 2)" references
the "J".

Subscripts may be specified as numeric (integer) literals, numeric (integer) data items, data items
created with any of the picture-less integer "USAGE" (see [USAGE], page 210) specifications,
"USAGE INDEX" data items or arithmetic expressions resulting in a non-zero integer value.

In the above examples, a comma is used as a separator character between the two subscript
values; semicolons (";") are also valid subscript separator characters, as are spaces! The use of
a comma or semicolon separator in such a situation is technically optional, but by convention
most COBOL programmers use one or the other. The use of no separator character (other than
a space) is not recommended, even though it is syntactically correct, as this practice can lead to
programmer-unfriendly code. It isn’t too difficult to read and understand "GRID-CHARACTER (2
3)", but it’s another story entirely when trying to comprehend "GRID-CHARACTER(I + 1 J /
3)" (instead of "GRID-CHARACTER(I + 1, J / 3)"). The compiler accepts it, but too much of
this would make my head hurt.

Chapter 2 - Cobol Fundamentals 31 May 2018

GnuCOBOL 3.0 rcl [03May2018] Programmer’s Guide 39

2.2.2. Qualification of Data Names

COBOL allows data names to be duplicated within a program, provided references to those data
names may be made in such a manner as to make those references unique through a process
known as qualification.

To see qualification at work, observe the following segments of two data records defined in a
COBOL program:

01 EMPLOYEE. 01 CUSTOMER.
05 MAILING-ADDRESS. 05 MAILING-ADDRESS.
10 STREET PIC X(35). 10 STREET PIC X(35).
10 CITY PIC X(15). 10 CITY PIC X(15).
10 STATE PIC X(2). 10 STATE PIC X(2).
10 ZIP-CODE. 10 ZIP-CODE.
16 ZIP-CODE-5 PIC 9(5). 156 ZIP-CODE-5 PIC 9(5).
15 FILLER PIC X(4). 15 FILLER PIC X(4).

Now, let’s deal with the problem of setting the CITY portion of an EMPLOYEEs MAILING-
ADDRESS to "Philadelphia". Clearly, "MOVE ’Philadelphia’ TO CITY" cannot work because
the compiler will be unable to determine which of the two CITY fields you are referring to.

In an attempt to correct the problem, we could qualify the reference to CITY as "MOVE
’Philadelphia’ TO CITY OF MAILING-ADDRESS".

Unfortunately that too is insufficient because it still insufficiently specifies which CITY is be-
ing referenced. To truly identify which specific CITY you want, you’d have to code "MOVE
’Philadelphia’ TO CITY OF MAILING-ADDRESS OF EMPLOYEE".

Now there can be no confusion as to which CITY is being changed. Fortunately, you don’t need
to be quite so specific; COBOL allows intermediate and unnecessary qualification levels to be
omitted. This allows "MOVE ’Philadelphia’ TO CITY OF EMPLOYEE" to do the job nicely.

If you need to qualify a reference to a table, do so by coding something like "<identifier-1>
OF <identifier-2> (subscript(s))".

The reserved word "IN" may be used in lieu of "OF".

31 May 2018 Chapter 2 - Cobol Fundamentals

40 GnuCOBOL 3.0 rcl [03May2018] Programmer’s Guide

2.2.3. Reference Modifiers

[Reference Modifier (Format 1) Syntax

identifier-1 [OF|IN identifier-2] [(subscript...) 1 (start:[length])

[Reference Modifier (Format 2) Syntax

intrinsic-function-reference (start:[length])

The COBOL ’85 standard introduced the concept of a reference modifier to facilitate references
to only a portion of a data item; GnuCOBOL fully supports reference modification.

The <start> value indicates the starting character position being referenced (character position
values start with 1, not 0 as is the case in some programming languages) and <length> specifies
how many characters are wanted.

If no <length> is specified, a value equivalent to the remaining character positions from <start>
to the end of <identifier-1> or to the end of the value returned by the function will be assumed.

Both <start> and <length> may be specified as integer numeric literals, integer numeric data
items or arithmetic expressions with an integer value.

Here are a few examples:

"CUSTOMER-LAST-NAME (1:3)"
References the first three characters of CUSTOMER-LAST-NAME.

"CUSTOMER-LAST-NAME (4:)"
References all character positions of CUSTOMER-LAST-NAME from the fourth

onward.

"FUNCTION CURRENT-DATE (5:2)"

References the current month as a 2-digit number in character form. See
[CURRENT-DATE], page 395, for more information.

"Hex-Digits (Nibble + 1:1)"

Assuming that "Nibble" is a numeric data item with a value in the range 0-15,
and Hex-Digits is a "PIC X(16)" item with a value of "0123456789ABCDEF", this
converts that numeric value to a hexadecimal digit.

"Table-Entry (6) (7:5)"

References characters 7 through 11 (5 characters in total) in the 6th occurrence of
Table-Entry.

Chapter 2 - Cobol Fundamentals 31 May 2018

GnuCOBOL 3.0 rcl [03May2018] Programmer’s Guide 41

Reference modification may be used anywhere an identifier is legal, including serving as the
receiving field of statements like "MOVE" (see [MOVE], page 316), "STRING" (see [STRING],
page 364) and "ACCEPT" (see [ACCEPT], page 243), to name a few.

31 May 2018 Chapter 2 - Cobol Fundamentals

42 GnuCOBOL 3.0 rcl [03May2018] Programmer’s Guide

2.2.4. Arithmetic Expressions

[Arithmetic-Expression Syntax
Unary-Expression-1 { **|~ } Unary-Expression-2
{ =1/}
{ +I-1
[Unary-Expression Syntax
{[+I-1{ (Arithmetic-Expression-1) T
{ { [LENGTH OF] { identifier-1 }r;
{ { -~ { literal-1 }r 3
{ { { Function-Reference } } }
{ Arithmetic-Expression-2 }

Arithmetic expressions are formed using four categories of operations — exponentiation, multi-
plication & division, addition & subtraction, and sign specification.

In complex expressions composed of multiple operators and operands, a precedence of operation
applies whereby those operations having a higher precedence are computed first before operations
with a lower precedence.

As is the case in almost any other programming language, the programmer is always free to
use pairs of parenthesis to enclose sub-expressions of complex expressions that are to be eval-
uated before other sub-expressions rather than let operator precedence dictate the sequence of
evaluation.

In highest to lowest order of precedence, here is a discussion of each category of operation:

Level 1 (Highest) — Unary Sign Specification ("+" and "-" with a single argument)

The unary "minus" (-) operator returns the arithmetic negation of its single argu-
ment, effectively returning as its value the product of its argument and -1.

The unary "plus" (+) operator returns the value of its single argument, effectively
returning as its value the product of its argument and +1.

Level 2 — Exponentiation ("#*" or "~")

The value of the left argument is raised to the power indicated by the right argument.
Non-integer powers are allowed. The """ and "**" operators are both supported to
provide compatibility with programs written for other COBOL implementations.

Level 3 — Multiplication ("*") and division ("/")

The "*" operator computes the product of the left and right arguments while the
"/" operator computes the value of the left argument divided by the value of the
right argument. If the right argument has a value of zero, expression evaluation will
be prematurely terminated before a value is generated. This may cause program
failure at run-time.

Chapter 2 - Cobol Fundamentals 31 May 2018

GnuCOBOL 3.0 rcl [03May2018] Programmer’s Guide 43

A sequence of multiple 3rd-level operations ("A * B / C", for example) will evaluate
in strict left-to-right sequence if no parenthesis are used to control the order of
evaluation.

Level 4 — Addition ("+") or subtraction ("+")

The "+" operator calculates the sum of the left and right arguments while the "-"
operator computes the value of the right argument subtracted from that of the left
argument.

A sequence of multiple 4th-level operations ("A - B + C", for example) will evaluate
in strict left-to-right sequence if no parenthesis are used to control the order of
evaluation.

The syntactical rules of COBOL, allowing a dash (-) character in data item names, can lead to
some ambiguity.

01 C PIC 9 VALUE 5.
01 D PIC 9 VALUE 2.
01 C-D PIC 9 VALUE 7.
01 I PIC 9 VALUE O.

COMPUTE I=C-D+1

The "COMPUTE" (see [COMPUTE], page 271) statement will evaluate the arithmetic expression
"C-D+1" and then save that result in "I".

What value will be stored in "I"? The number 4, which is the result of subtracting the value of
"D" (2) from the value of "C" (5) and then adding 1? Or, will it be the number 8, which is the
value of adding 1 to the value of data item "C-D" (7)?

The right answer is 8 — the value of data item "C-D" plus 1! Hopefully, that was the intended
result.

The GnuCOBOL compiler actually went through the following decision-making logic when gen-
erating code for the "COMPUTE" Statement:

1. Is there a data item named "C-D" defined? If so, use its value for the character sequence
llC_DIl‘

2. If thereis no "C-D" data item, then are there "C" and "D" data items? If not, the "COMPUTE"
statement is in error. If there are, however, then code will be generated to subtract the
value of "D" from "C" and add 1 to the result.

Had there been at least one space to the left and/or the right of the "-", there would have been
no ambiguity — the compiler would have been forced to use the individual "C" and "D" data
items.

To avoid any possible ambiguity, as well as to improve program readability, it’s considered good
COBOL programming practice to always code at least one space to both the left and right of
every operator in arithmetic expressions as well as the "=" sign on a COMPUTE.

Here are some examples of how the precedence of operations affects the results of arithmetic
expressions (all examples use numeric literals, to simplify the discussion).

31 May 2018 Chapter 2 - Cobol Fundamentals

44 GnuCOBOL 3.0 rcl [03May2018] Programmer’s Guide

Expression Result Notes

3*¥4+1 13 * has precedence over +

4*2°3-10 22 2°3 is 8 (~ has precedence over *), times 4 is 32, minus
10 is 22.

(4*2)~3-10 502 Parenthesis provide for a recursive application of the

arithmetic expression rules, effectively allowing you to
alter the precedence of operations. 4 times 2 is 8 (the
use of parenthesis "trumps" the exponentiation opera-
tor, so the multiplication happens first); 8 ~ 3 is 512,
minus 10 is 502.

5/25+7*2-1.15 15.35 Integer and non-integer operands may be freely
intermixed

Of course, arithmetic expression operands may be numeric data items (any USAGE except
POINTER or PROGRAM POINTER) as well as numeric literals.

Chapter 2 - Cobol Fundamentals 31 May 2018

GnuCOBOL 3.0 rcl [03May2018] Programmer’s Guide

2.2.5. Conditional Expressions

45

Conditional expressions are expressions which identify the circumstances under which a program
may take an action or cease taking an action. As such, conditional expressions produce a value

of TRUE or FALSE.

There are seven types of conditional expressions, as discussed in the following sections.

2.2.5.1. Condition Names

These are the simplest of all conditions. Observe the following code:

05 SHIRT-SIZE
88 TINY
88 XS
88 S
88 M
88 L
88 XL
88 XXL
88 XXXL
88 VERY-LARGE

The condition names "TINY", "XS" 6 "S" 6 "M",

SIZE).

PIC 99V9.
0 THRU 12.5
13 THRU 13.5.

VALUE
VALUE
VALUE
VALUE
VALUE
VALUE
VALUE
VALUE
VALUE

14,
15,
16,
17,
18,
19,

14.
15.
16.
17.
18.
19.

[S2BO 2 ¢ NG BN B¢

20 THRU 99.9.

"L, "XL", "XXL", "XXXL" and "VERY-LARGE"
will have TRUE or FALSE values based upon the values within their parent data item (SHIRT-

A program wanting to test whether or not the current "SHIRT-SIZE" value can be classified
as "XL" could have that decision coded as a combined condition (the most complex type of

conditional expression), as either:

IF SHIRT-SIZE = 17 OR SHIRT-SIZE =

- or -

IF SHIRT-SIZE = 17 OR 17.5

17.5

Or it could simply utilize the condition name XL as follows:

IF XL

31 May 2018

Chapter 2 - Cobol Fundamentals

46

GnuCOBOL 3.0 rcl [03May2018] Programmer’s Guide

2.2.5.2. Class Conditions

:

Class-Condition Syntax

identifier-1 IS [NOT] { NUMERIC }
T { e }
{ ALPHABETIC }

{ "~ }

{ ALPHABETIC-LOWER }

{ " }

{ ALPHABETIC-UPPER }

{ " }

{ OMITTED }

{ }

{ class—name-1 }

Class conditions evaluate the type of data that is currently stored in a data item.

1.

The "NUMERIC" class test considers only the characters "0", "1", ... , "9" to be numeric;
only a data item containing nothing but digits will pass a "NUMERIC" class test. Spaces,
decimal points, commas, currency signs, plus signs, minus signs and any other characters
except the digit characters will all fail "NUMERIC" class tests.

The "ALPHABETIC" class test considers only upper-case letters, lower-case letters and spaces
to be alphabetic in nature.

The "ALPHABETIC-LOWER" and "ALPHABETIC-UPPER" class conditions consider only spaces
and the respective type of letters to be acceptable in order to pass such a class test.

The "NOT" option reverses the TRUE/FALSE value of the condition.

Note that what constitutes a "letter" (or upper/lower case too, for that manner) may
be influenced through the use of "CHARACTER CLASSIFICATION" specifications in the
"OBJECT-COMPUTER" (see [OBJECT-COMPUTER], page 88) paragraph.

Only data items whose "USAGE" (see [USAGE], page 210) is either explicitly or implic-
itly defined as "DISPLAY" may be used in "NUMERIC" or any of the "ALPHABETIC" class
conditions.

Some COBOL implementations disallow the use of group items or "PIC A" items with
"NUMERIC" class conditions and the use of "PIC 9" items with "ALPHABETIC" class condi-
tions. GnuCOBOL has no such restrictions.

The "OMITTED" class condition is used when it is necessary for a subprogram to deter-
mine whether or not a particular argument was passed to it. In such class conditions,
<identifier-1> must be a linkage section item defined on the "USING" clause of the subpro-
grams "PROCEDURE DIVISION" header. See [PROCEDURE DIVISION USING], page 224,
for additional information.

The <class-name-1> option allows you to test for a user-defined class. Here’s an example. First,
assume the following "SPECIAL-NAMES" (sece [SPECIAL-NAMES], page 90) definition of the
user-defined class "Hexadecimal":

Chapter 2 - Cobol Fundamentals 31 May 2018

GnuCOBOL 3.0 rcl [03May2018] Programmer’s Guide 47

SPECTAL-NAMES.
CLASS Hexadecimal IS ’0’ THRU ’9’, ’A’ THRU ’F’, ’a’ THRU ’f’.

Now observe the following code, which will execute the "150-Process-Hex-Value" procedure

if "Entered-Value" contains nothing but valid hexadecimal digits:

IF Entered-Value IS Hexadecimal
PERFORM 150-Process-Hex-Value
END-IF

31 May 2018 Chapter 2 - Cobol Fundamentals

48 GnuCOBOL 3.0 rcl [03May2018] Programmer’s Guide

2.2.5.3. Sign Conditions

[Sign-Condition Syntax

identifier-1 IS [NOT] { POSITIVE }

SRS Saiataiatatatatet }
{ NEGATIVE }
{ e }
{ ZERO }

Sign conditions evaluate the numeric state of a data item defined with a "PICTURE" (see
[PICTURE], page 186) and/or "USAGE" (see [USAGE], page 210) that supports numeric values.

1. A "POSITIVE" or "NEGATIVE" class condition will be TRUE only if the value of <identifier-
1> is strictly greater than or less than zero, respectively.

2. A "ZERO" class condition can be passed only if the value of <identifier-1> is exactly zero.

3. The "NOT" option reverses the TRUE/FALSE value of the condition.

Chapter 2 - Cobol Fundamentals 31 May 2018

GnuCOBOL 3.0 rcl [03May2018] Programmer’s Guide 49

2.2.5.4. Switch-Status Conditions

In the "SPECIAL-NAMES" (see [SPECIAL-NAMES], page 90) paragraph, an external switch name
can be associated with one or more condition names. These condition names may then be used
to test the ON/OFF status of the external switch.

Here are the relevant sections of code in a program named "testprog", which is designed to
simply announce if SWITCH-1 is on:

ENVIRONMENT DIVISION.
SPECIAL-NAMES.
SWITCH-1 ON STATUS IS Switch-1-Is-0ON.

PROCEDURE DIVISION.

IF Switch-1-Is-0N
DISPLAY "Switch 1 Is On"
END-IF

the following are two different command window sessions — the left on a Unix/Cygwin/OSX
system and the right on a windows system — that will set the switch on and then execute the
"testprog" program. Notice how the message indicating that the program detected the switch
was set is displayed in both examples:

$ COB_SWITCH_1=0N C:>SET COB_SWITCH_1=0N
$ export COB_SWITCH_1 C:>testprog

$./testprog Switch 1 Is On

Switch 1 Is On C:>

$

31 May 2018 Chapter 2 - Cobol Fundamentals

50

GnuCOBOL 3.0 rcl [03May2018] Programmer’s Guide

2.2.5.5. Relation Conditions

:

Relation-Condition Syntax

P

identifier-1 } IS [NOT] RelOp { identifier-2 }
literal-1 } T { literal-2 }
arithmetic-expression-1 } { arithmetic-expression-2 }
index-name-1 } { index-name-2 }

RelOp Syntax

B S S N T

EQUAL TO

LESS THAN

LESS THAN OR EQUAL TO

L B B e B Il el s A =T S A A SR

These conditions evaluate how two different values "relate" to each other.

1.

4.

When comparing one numeric value to another, the "USAGE" (see [USAGE], page 210) and
number of significant digits in either value are irrelevant as the comparison is performed
using the actual algebraic values.

When comparing strings, the comparison is made based upon the program’s collating se-
quence. When the two string arguments are of unequal length, the shorter is assumed to be
padded (on the right) with a sufficient number of spaces as to make the two strings of equal
length. String comparisons take place on a corresponding character-by-character basis, left
to right, until the TRUE/FALSE value for the relation test can be established. Characters
are compared according to their relative position in the program’s "COLLATING SEQUENCE"
(as defined in "SPECIAL-NAMES" (see [SPECIAL-NAMES], page 90)), not according to the
bit-pattern values the characters have in storage.

By default, the program’s "COLLATING SEQUENCE" will, however, be based entirely on the
bit-pattern values of the various characters.

There is no functional difference between using the wordy version ("IS EQUAL TQO", "IS

Chapter 2 - Cobol Fundamentals 31 May 2018

GnuCOBOL 3.0 rcl [03May2018] Programmer’s Guide 51

LESS THAN", ...) versus the symbolic version ("=", "<" ...) of the actual relation opera-
tors.

31 May 2018 Chapter 2 - Cobol Fundamentals

52 GnuCOBOL 3.0 rcl [03May2018] Programmer’s Guide

2.2.5.6. Combined Conditions

[Combined Condition Syntax
[(] Condition-1 [)] { AND } [(] Condition-2 [)]
{7}
{O0rR }
{3

A combined condition is one that computes a TRUE/FALSE value from the TRUE/FALSE
values of two other conditions (which could themselves be combined conditions).

1. If either condition has a value of TRUE, the result of "OR"ing the two together will result
in a value of TRUE. "OR"ing two FALSE conditions will result in a value of FALSE.

2. In order for "AND" to yield a value of TRUE, both conditions must have a value of TRUE.
In all other circumstances, "AND" produces a FALSE value.

3. When chaining multiple, similar conditions together with the same operator (OR/AND),
and left or right arguments have common subjects, it is possible to abbreviate the program
code. For example:

IF ACCOUNT-STATUS

1 OR ACCOUNT-STATUS = 2 OR ACCOUNT-STATUS = 7

Could be abbreviated as:
IF ACCOUNT-STATUS 1 0R20RT7

4. Just as multiplication takes precedence over addition in arithmetic expressions, so does
"AND" take precedence over "OR" in combined conditions. Use parenthesis to change this
precedence, if necessary. For example:

"FALSE AND FALSE OR TRUE AND TRUE"
Evaluates to TRUE

"(FALSE AND FALSE) OR (TRUE AND TRUE)"

Evaluates to TRUE (since AND has precedence over OR) - this is identical to
the previous example

"(FALSE AND (FALSE OR TRUE)) AND TRUE"
Evaluates to FALSE

Chapter 2 - Cobol Fundamentals 31 May 2018

GnuCOBOL 3.0 rcl [03May2018] Programmer’s Guide 53

2.2.5.7. Negated Conditions

[Negated Condition Syntax

NOT Condition-1

A condition may be negated by prefixing it with the "NOT" operator.

1. The "NOT" operator has the highest precedence of all logical operators, just as a unary minus
sign (which "negates" a numeric value) is the highest precedence arithmetic operator.

2. Parenthesis must be used to explicitly signify the sequence in which conditions are evaluated
and processed if the default precedence isn’t desired. For example:

"NOT TRUE AND FALSE AND NOT FALSE"
Evaluates to FALSE AND FALSE AND TRUE which evaluates to FALSE

"NOT (TRUE AND FALSE AND NOT FALSE)"
Evaluates to NOT (FALSE) which evaluates to TRUE

"NOT TRUE AND (FALSE AND NOT FALSE)"
Evaluates to FALSE AND (FALSE AND TRUE) which evaluates to FALSE

31 May 2018 Chapter 2 - Cobol Fundamentals

54 GnuCOBOL 3.0 rcl [03May2018] Programmer’s Guide

2.2.6. Use of Periods

All COBOL implementations distinguish between sentences and statements in the procedure
division. A ’Statement’ is a single executable COBOL instruction. For example, these are all
statements:

MOVE SPACES TO Employee-Address
ADD 1 TO Record-Counter
DISPLAY "Record-Counter=" Record-Counter

Some COBOL statements have a "scope of applicability" associated with them where one or
more other statements can be considered to be part of or related to the statement in question.
An example of such a situation might be the following, where the interest on a loan is being
calculated and displayed — 4% interest if the loan balance is under $10000 and 4.5% otherwise
(WARNING - the following code has an error!):

IF Loan-Balance < 10000

MULTIPLY Loan-Balance BY 0.04 GIVING Interest
ELSE

MULTIPLY Loan-Balance BY 0.045 GIVING Interest
DISPLAY "Interest Amount = " Interest

In this example, the IF statement actually has a scope that can include two sets of associated
statements — one set to be executed when the "IF" (see [IF], page 302) condition is TRUE and
another if it is FALSE.

Unfortunately, there’s a problem with the above. A human being looking at that code would
probably infer that the "DISPLAY" (see [DISPLAY], page 275) statement, because of its lack
of indentation, is to be executed regardless of the TRUE/FALSE value of the "IF" condition.
Unfortunately, the GnuCOBOL compiler (or any other COBOL compiler for that matter) won’t
see it that way because it really couldn’t care less what sort of indentation, if any, is used. In
fact, any COBOL compiler would be just as happy to see the code written like this:

IF Loan-Balance < 10000 MULTIPLY Loan-balance
BY 0.04 GIVING Interest ELSE MULTIPLY
Loan-Balance BY 0.045 GIVING Interest DISPLAY
"Interest Amount = " Interest

So how then do we inform the compiler that the "DISPLAY" statement is outside the scope of
the "IF"?

That’s where sentences come in.

A COBOL ’Sentence’ is defined as any arbitrarily long sequence of statements, followed by a
period (.) character. The period character is what terminates the scope of a set of statements.
Therefore, our example should have been coded like this:

IF Loan-Balance < 10000

MULTIPLY Loan-Balance BY 0.04 GIVING Interest
ELSE

MULTIPLY Loan-Balance BY 0.045 GIVING Interest.
DISPLAY "Interest Amount = " Interest

See the period at the end of the second "MULTIPLY" (see [MULTIPLY], page 318)? That is what

Chapter 2 - Cobol Fundamentals 31 May 2018

GnuCOBOL 3.0 rcl [03May2018] Programmer’s Guide 55

terminates the scope of the "IF", thus making the "DISPLAY" statement’s execution completely
independent of the TRUE/FALSE status of the "IF".

31 May 2018 Chapter 2 - Cobol Fundamentals

56 GnuCOBOL 3.0 rcl [03May2018] Programmer’s Guide

2.2.7. Use of VERB/END-VERB Constructs

Prior to the 1985 COBOL standard, using a period character was the only way to signal the
end of a statement’s scope.

Unfortunately, this caused some problems. Take a look at this code:

IF A=1
IFB=1

DISPLAY "A & B = 1"
ELSE *> This ELSE has a problem!

IFB=1

DISPLAY "A NOT = 1 BUT B = 1"
ELSE

DISPLAY "NEITHER A NOR B = 1".

The problem with this code is that indentation — so critical to improving the human-readability
of a program — can provide an erroneous view of the logical flow. An "ELSE" is always associated
with the most-recently encountered "IF"; this means the emphasized "ELSE" will be associated
with the "IF B = 1" statement, not the "IF A = 1" statement as the indentation would appear
to imply.

This sort of problem led to a band-aid solution — the "NEXT SENTENCE" clause — being added
to the COBOL language.

IF A =1
IFB=1
DISPLAY "A & B = 1"
ELSE
NEXT SENTENCE
ELSE
IFB=1
DISPLAY "A NOT = 1 BUT B = 1"
ELSE
DISPLAY "NEITHER A NOR B = 1".

The "NEXT SENTENCE" clause informs the compiler that if the "B = 1" condition is false, control
should fall into the first statement that follows the next period.

With the 1985 standard for COBOL, a much more elegant solution was introduced. Any COBOL
"Verb’ (the first reserved word of a statement) that needed such a thing was allowed to use an
"END-verb" construct to end it’s scope without disrupting the scope of any other statement it
might have been in. Any COBOL 85 compiler would have allowed the following solution to our
problem:

IF A=1
IFB=1
DISPLAY "A & B = 1"
END-IF
ELSE
IFB=1
DISPLAY "A NOT = 1 BUT B = 1"
ELSE

Chapter 2 - Cobol Fundamentals 31 May 2018

GnuCOBOL 3.0 rcl [03May2018] Programmer’s Guide 57

DISPLAY "NEITHER A NOR B = 1".

This new facility made the period almost obsolete, as our program segment would probably be
coded like this today:

IF A=1
IFB=1
DISPLAY "A & B = 1"
END-IF
ELSE
IFB=1
DISPLAY "A NOT = 1 BUT B = 1"
ELSE
DISPLAY "NEITHER A NOR B = 1"
END-IF
END-IF

COBOL (GnuCOBOL included) still requires that each procedure division paragraph contain
at least one sentence if there is any executable code in that paragraph, but a popular coding
style is now to simply code a single period right before the end of each paragraph.

The standard for the COBOL language shows the various "END-verb" clauses are optional
because using a period as a scope-terminator remains legal.

If you will be porting existing code over to GnuCOBOL, you’ll find it an accommodating facility
capable of conforming to whatever language and coding standards that code is likely to use. If
you are creating new GnuCOBOL programs, however, I would strongly counsel you to use the
"END-verb" structures in those programs.

31 May 2018 Chapter 2 - Cobol Fundamentals

58 GnuCOBOL 3.0 rcl [03May2018] Programmer’s Guide

2.2.8. Concurrent Access to Files

The manipulation of data files is one of the COBOL language’s great strengths. There are
features built into COBOL to deal with the possibility that multiple programs may be attempting
to access the same file concurrently. Multiple program concurrent access is dealt with in two
ways — file sharing and record locking.

Not all GnuCOBOL implementations support file sharing and record-locking options. Whether
they do or not depends upon the operating system they were built for and the build options
that were used when the specific GnuCOBOL implementation was generated.

2.2.8.1. File Sharing

GnuCOBOL controls concurrent-file access at the highest level through the concept of file shar-
ing, enforced when a program attempts to open a file. This is accomplished via a UNIX
operating-system routine called "fentl()". That module is not currently supported by Win-
dows and is not present in the MinGW Unix-emulation package. GnuCOBOL builds created
using a MinGW environment will be incapable of supporting file-sharing controls — files will
always be shared in such environments. A GnuCOBOL build created using the Cygwin envi-
ronment on Windows would have access to "fentl()" and therefore will support file sharing. Of
course, actual Unix builds of GnuCOBOL, as well as OSX builds, should have no issues because
"fentl()" should be available.

Any limitations imposed on a successful "OPEN" (see [OPEN], page 322) will remain in place
until your program either issues a "CLOSE" (see [CLOSE], page 269) against the file or the
program terminates.

File sharing is controlled through the use of a "SHARING" clause:
SHARING WITH { ALL OTHER }

}
NO OTHER }
- }
READ ONLY %}

B

This clause may be used either in the file’s "SELECT" statement (see [SELECT], page 101), on
the "OPEN" statement (see [OPEN], page 322) which initiates your program’s use of the file, or
both. If a "SHARING" option is specified in both places, the specifications made on the "OPEN"
statement will take precedence over those from the "SELECT" statement.

Here are the meanings of the three options:

"ALL OTHER"

When your program opens a file with this sharing option in effect, no restrictions
will be placed on other programs attempting to "OPEN" the file after your program
did. This is the default sharing mode.

"NO OTHER"

When your program opens a file with this sharing option in effect, your program
announces that it is unwilling to allow any other program to have any access to
the file as long as you are using that file; "OPEN" attempts made in other programs

Chapter 2 - Cobol Fundamentals 31 May 2018

GnuCOBOL 3.0 rcl [03May2018] Programmer’s Guide 59

will fail with a file status of 37 ("PERMISSION DENIED") until such time as you
"CLOSE" (see [CLOSE], page 269) the file.

"READ ONLY"

Opening a file with this sharing option indicates you are willing to allow other
programs to "OPEN" the file for input while you have it open. If they attempt any
other "OPEN", theirs will fail with a file status of 37. Of course, your program may
fail if someone else got to the file first and opened it with a sharing option that
imposed file-sharing limitations.

If the "SELECT" of a file is coded with a "FILE STATUS" clause, "OPEN" failures — including
those induced by sharing failures — will be detectable by the program and a graceful recovery
(or at least a graceful termination) will be possible. If no such clause was coded, however, a
runtime message will be issued and the program will be terminated.

31 May 2018 Chapter 2 - Cobol Fundamentals

60 GnuCOBOL 3.0 rcl [03May2018] Programmer’s Guide

2.2.8.2. Record Locking

Record-locking is supported by advanced file-management software built-in to the GnuCOBOL
implementation you are using. This software provides a single point-of-control for access to
files — usually "ORGANIZATION INDEXED" (see [ORGANIZATION INDEXED], page 112) files.
One such runtime package capable of doing this is the Berkeley Database (BDB) package — a
package frequently used in GnuCOBOL builds to support indexed files.

The various I/O statements your program can execute are capable of imposing limitations on
access by other concurrently-executing programs to the file record they just accessed. These
limitations are syntactically imposed by placing a lock on the record using a "LOCK" clause.
Other records in the file remain available, assuming that file-sharing limitations imposed at the
time the file was opened didn’t prevent access to the entire file.

1. If the GnuCOBOL build you are using was configured to use the Berkeley Database (BDB)
package for indexed file I/O, record locking will be available by using the "DB_HOME" run-
time environment variable (see [Run Time Environment Variables], page 596).

2. If the "SELECT" (see [SELECT], page 101) statement or file "OPEN" (see [OPEN], page 322)
specifies "SHARING WITH NO OTHER", record locking will be disabled.

3. If the file’s "SELECT" contains a "LOCK MODE IS AUTOMATIC" clause, every time a record
is read from the file, that record is automatically locked. Other programs may access other
records within the file, but not a locked record.

4. If the file’s "SELECT" contains a "LOCK MODE IS MANUAL" clause, locks are placed on records
only when a "READ" statement executed against the file includes a "LOCK" clause (this clause
will be discussed shortly).

5. If the "LOCK ON" clause is specified in the file’s "SELECT", locks (either automatically or
manually acquired) will continue to accumulate as more and more records are read, until
they are explicitly released. This is referred to as 'multiple record locking’.

Locks acquired vie multiple record locking remain in-effect until the program holding the
lock. . .

e .. .terminates, or ...

e .. .executes a "CLOSE" statement (see [CLOSE], page 269) against the file, or . . .

e .. .executes an "UNLOCK" statement (see [UNLOCK], page 374) against the file, or . ..
e .. .executes a "COMMIT" statement (see [COMMIT], page 270) or . ..

e ...executes a "ROLLBACK" statement (see [ROLLBACK], page 340).

6. If the "LOCK ON" clause is not specified, then the next I/O statement your program executes,
except for "START" (see [START], page 360), will release the lock. This is referred to as
"single record locking’.

7. A "LOCK" clause, which may be coded on a "READ" (see [READ], page 330), "REWRITE" (see
[REWRITE], page 338) or "WRITE" statement (see [WRITE], page 379) looks like this:

{ IGNORING LOCK }

{ o e }
{ WITH [NO] LOCK }
{ Tt %
{ WITH KEPT LOCK }
{ 7 o }

Chapter 2 - Cobol Fundamentals 31 May 2018

GnuCOBOL 3.0 rcl [03May2018] Programmer’s Guide 61

{ WITH IGNORE LOCK }
}
{ WITH WAIT }

The "WITH [NO] LOCK" option is the only one available to "REWRITE" or "WRITE" state-
ments.

The meanings of the various record locking options are as follows:

"IGNORING LOCK"

"WITH IGNORE LOCK"
These options (which are synonymous) inform GnuCOBOL that any locks held
by other programs should be ignored.

"WITH LOCK"
Access to the record by other programs will be denied.

"WITH NO LOCK"
The record will not be locked. This is the default locking option in effect for
all statements.

"WITH KEPT LOCK"
When single record locking is in-effect, as a new record is accessed, locks held
for previous records are released. By using this option, not only is the newly-
accessed record locked (as WITH LOCK would do), but prior record locks will
be retained as well. A subsequent "READ" without the "KEPT LOCK" option will
release all "kept" locks, as will the "UNLOCK" statement.

"WITH WAIT"
This option informs GnuCOBOL that the program is willing to wait for a lock
held (by another program) on the record being read to be released.

Without this option, an attempt to read a locked record will be immediately
aborted and a file status of 51 will be returned.

With this option, the program will wait for a pre-configured time for the lock
to be released. If the lock is released within the preconfigured wait time, the
read will be successful. If the pre-configured wait time expires before the lock
is released, the read attempt will be aborted and a 51 file status will be issued.

End of Chapter 2 — COBOL Fundamentals

31 May 2018 Chapter 2 - Cobol Fundamentals

GnuCOBOL 3.0 rcl [03May2018] Programmer’s Guide 63

3. CDF - Compiler Directing Facility

The Compiler Directing Facility, or CDF, is a means of controlling the compilation of Gnu-
COBOL programs. CDF provides a mechanism for dynamically setting or resetting certain
compiler switches, introducing new source code from one or more source code libraries, making
dynamic source code modifications and conditionally processing or ignoring source statements
altogether. This is accomplished via a series of special CDF statements and directives that will
appear in the program source code.

When the compiler is operating in Fixed Format Mode, all CDF statements must begin in
column eight (8) or beyond.

There are two types of supported CDF statements in GnuCOBOL — Text Manipulation State-
ments and Compiler Directives.

The CDF text manipulation statements "COPY" and "REPLACE" are used to introduce new code
into programs either with or without changes, or may be used to modify existing statements
already in the program. Text manipulation statements are always terminated with a period.

CDF directives, denoted by the presence of a ">>" character sequence as part of the statement
name itself, are used to influence the process of program compilation.

Compiler directives are never terminated with a period.

31 May 2018 Chapter 3 - CDF - Compiler Directing Facility

64 GnuCOBOL 3.0 rcl [03May2018] Programmer’s Guide

3.1. >CALL-CONVENTION

[CDF >>CALL-CONVENTION Syntax J
>>CALL-CONVENTION { coBOoL }
~~~~~~~~~~~~~~~~~ { EXTERN }
{ STDCALL }
{ STATIC

This directive instructs the compiler how to treat references to program names and may be used
to determine other details for interacting with a function or program. There are four options
with COBOL being the default.

1. COBOL (the default) the program name is treated as a COBOL word that maps to the
externalised name program to be called, cancelled or referenced in the program-address-
identifier, applying the same mapping rules as for a program name for which no AS phrase
is specified.

2. EXTERN the program name is treated as an external reference.
3. STDCALL. < more info needed >

4. STATIC the program name is called as a included element and not dynamically which is
the normal default.

Chapter 3 - CDF - Compiler Directing Facility 31 May 2018



GnuCOBOL 3.0 rcl [03May2018] Programmer’s Guide 65

[

3.2. COPY
CDF COPY Statement Syntax j
COPY copybook-name
[ IN|OF library-name ]
[ SUPPRESS PRINTING ]
[ REPLACING { Phrase-Clause | String-Clause }... ]
CDF COPY Phrase-Clause Syntax }
{ ==pseudo-text-1== } BY { ==pseudo-text-2== }
{ identifier-1 } 77 { identifier-2 }
{ literal-1 } { literal-2 }
{ word-1 } { word-2 }

CDF COPY String-Clause Syntax

LEADING|TRAILING ] ==partial-word-1== BY ==partial-word-2==

"COPY" statements are used to import copybooks (see [Copybooks], page 13) into a program.

"COPY" statements may be used anywhere within a COBOL program where the code con-
tained within the copybook would be syntactically valid.

The optional "SUPPRESS" clause (with or without the optional "PRINTING" reserved word)
is valid syntactically but is non-functional. It is supported to facilitate compatibility with
source code written for other versions of COBOL.

There is no difference between the use of the word "IN" and the word "OF" — use the one
you prefer.
A period is absolutely mandatory at the end of every "COPY" statement, even if the state-

ment occurs within the scope of another one where a period might appear disruptive, such
as within the scope of an "IF" (see [IF], page 302) statement. This mandatory period at
the end of the statement will not, however, affect the statement scope in which the "COPY"
occurs.

Both <pseudo-text-2> and <partial-word-2> may be null.

All "COPY" statements are located and the contents of the corresponding copybooks inserted
into the program source code before the actual compilation process begins. If a copybook
contains a "COPY" statement, the copybook insertion process will be repeated to resolve the

31 May 2018 Chapter 3 - CDF - Compiler Directing Facility



66

GnuCOBOL 3.0 rcl [03May2018] Programmer’s Guide

embedded "COPY". This will continue until no unresolved "COPY" statements remain. At
that point, actual program compilation will begin.

8. See [Locating Copybooks]|, page 588, for the specific rules on how copybooks are located by

the compiler.

9. The optional "REPLACING" clause allows for one or more of either of the following kinds of
text replacements to be made:

<< Phrase-Clause>>

Replacement of one or more complete reserved words, user-defined identifiers
or literals; the following points apply to this option:

This option cannot be used to replace part of a word, identifier or literal.
Whatever precedes the "BY" will be referred to here as the search string.

Single-item search strings can be specified by coding the "<identifier-
1>" "<literal-1>" or "<word-1>" being replaced.

Multiple-item search strings can be specified using the "==<pseudo-text-
1>==" option. For example, to replace all occurrences of "UPON PRINTER",
you would specify "==UPON PRINTER==".

The replacement string, which follows the "BY", may be specified using any
of the four options.

If the replacement string is a multiple-item phrase or is to be deleted alto-
gether, you must use the "==<pseudo-text-2>==" option. If "<pseudo-
text-2>" is null (in other words, the replacement text is specified as
"====") all encountered occurrences of the search string will be deleted.

<<String-Clause>>

Using this, you may replace character sequences that occur at the beginning
("LEADING") or end ("TRAILING") of reserved or user-defined words. For ex-
ample, to change all words of the form "0100-xxxxxx" to "020-xxxxxx", code
"LEADING ==0100-== BY ==020-==". To simply remove all "0100-" prefixes
from words, code "LEADING ==0100-== BY ====",

Chapter 3 - CDF - Compiler Directing Facility 31 May 2018



GnuCOBOL 3.0 rcl [03May2018] Programmer’s Guide 67

3.3. REPLACE

[ CDF REPLACE Statement (Format 1) Syntax

REPLACE [ ALSO ] { Phrase-Clause | String-Clause }...

[ CDF REPLACE Statement (Format 2) Syntax

REPLACE [ LAST ] OFF .

[ CDF REPLACE Phrase-Clause Syntax

{ ==pseudo-text-1== } BY { ==pseudo-text-2==

[ CDF REPLACE String-Clause Syntax

[ LEADING|TRAILING ] ==partial-word-1== BY ==partial-word-2==

1. The "REPLACE" statement provides a mechanism for changing all or part of one or more
GnuCOBOL statements.

2. A period is absolutely mandatory at the end of every "REPLACE" statement (either format),
even if the statement occurs within the scope of another one where a period might appear
disruptive (such as within the scope of an "IF" (see [IF], page 302) statement; the period
will not, however, affect the statement scope in which the "REPLACE" occurs.

3. The following points apply to Format 1 of the "REPLACE" statement:

A. Format 1 of the "REPLACE" statement can be used to make changes to program source
code in much the same way as the "REPLACING" option of the "COPY" statement can,
via these options:

<< Phrase-Clause>>

Replace one or more complete reserved words, user-defined identifiers or
literals; the following points apply to this option:

e This option cannot be used to replace part of a word, identifier or
literal.

31 May 2018 Chapter 3 - CDF - Compiler Directing Facility



68

GnuCOBOL 3.0 rcl [03May2018] Programmer’s Guide

e Whatever precedes the "BY" will be referred to here as the search
string.

e Search strings on "REPLACE" are always specified using the
"==<pseudo-text-1>==" option. For example, to replace all
occurrences of "UPON PRINTER", you would specify "==UPON
PRINTER==".

e The replacement string, which follows the "BY", is specified using the
"==<pseudo-text-2>==" option. If "<pseudo-text-2>" is null (in
other words, the replacement text is specified as "===="), all encoun-
tered occurrences of the search string will be deleted.

<< String-Clause>>

Using this, you may replace character sequences that occur at the beginning
("LEADING") or end ("TRAILING") of reserved or user-defined words. For
example, to change all words of the form "0100-xxxxxx" to "020-xxxxxX",
code "LEADING ==0100-== BY ==020-==". To simply remove all "0100-"
prefixes from words, code "LEADING ==0100-== BY ====",

Once a Format 1 "REPLACE" statement is encountered in the currently-compiling source
file, Replace Mode becomes active, and the change(s) specified by that statement will
be automatically made on all subsequent source statements the compiler reads from
the file.

Replace Mode remains in-effect — continuing to make source code changes — until
another Format 1 "REPLACE" is encountered, the end of currently compiling program
source file is reached or a Format 2 "REPLACE" statement is encountered.

When a Format 1 "REPLACE" statement with the "ALSO" keyword is encountered with-
out Replace Mode being currently active, the effect will be as if the "ALSO" had not
been specified. If Replace Mode already was in effect, the effect will be to "push" the
current change specification(s) onto the top of a stack and add the specification(s) of
the new statement to those that were already in effect.

When a Format 1 "REPLACE" without the "ALSO" keyword is encountered, any stacked
change specification(s), if any, will be discarded and the currently in-effect change
specification(s), if any, will be replaced by those of the new statement.

When the end of the currently-compiling source file is reached, Replace Mode is deacti-
vated and any stacked replace specifications will be discarded — compilation of the next
source file (if any) will begin with Replace Mode inactive and no change specification(s)
on the stack.

4. The following points apply to Format 2 of the "REPLACE" statement:

A.

B.

If Replace Mode is currently inactive, the Format 2 REPLACE statement will be
ignored.

If Replace Mode is currently active, a "REPLACE OFF." will deactivate Replace Mode
and discard any replace specification(s) on the stack. The compiler will henceforth
operate as if no "REPLACE" had ever been encountered, until such time as another
Format 1 "REPLACE" is encountered.

If Replace Mode is currently active, a "REPLACE LAST OFF." will replace the current
replace specification(s) with those popped off the top of the stack. If there were no

Chapter 3 - CDF - Compiler Directing Facility 31 May 2018



GnuCOBOL 3.0 rcl [03May2018] Programmer’s Guide 69

replace specification(s) on the stack, the effect will be as if a "REPLACE OFF." had been
coded.

31 May 2018 Chapter 3 - CDF - Compiler Directing Facility



70

GnuCOBOL 3.0 rcl [03May2018] Programmer’s Guide

3.4. >DEFINE

:

CDF >>DEFINE Directive Syntax

>>DEFINE [ CONSTANT ] cdf-variable-1 AS { OFF }

”””””””””””””” { }

{ literal-1 [ OVERRIDE ] }
<« e }
{ PARAMETER [ OVERRIDE ] }

Use the ">>DEFINE" CDF directive to create CDF variables and (optionally) assign them either
literal or environment variable values.

1.

The reserved word "AS" is optional and may be included, or not, at the discretion of the
programmer. The presence or absence of this word has no effect upon the program.

CDF variables defined in this way become undefined once an "END PROGRAM" or "END
FUNCTION" directive is encountered in the input source.

The ">>DEFINE" CDF directive is one way to create CDF variables that may be processed
by other CDF statements such as ">>IF" (see [>>IF], page 71). The ">>SET" CDF directive
(see [>>SET], page 73) provides another way to create them.

CDF variable names follow the rules for standard GnuCOBOL user-defined names, and
may not duplicate any CDF reserved word. CDF variable names may duplicate COBOL
reserved words, provided the "CONSTANT" option is not specified, but such names are not
recommended.

The "CONSTANT" option is valid only in conjunction with <literal-1>. When "CONSTANT" is
specified, the CDF variable that is created may be used within your regular COBOL code
as if it were a literal value. Without this option, the CDF variable may only be referenced
on other CDF statements. The "OFF" option is used to create a variable without assigning
it any value.

The "PARAMETER" option is used to create a variable whose value is that of the environment
variable of the same name. Note that this value assignment occurs at compilation time, not
program execution time.

In the absence of the "OVERRIDE" option, <cdf-variable-1> must not yet have been defined.
When the "OVERRIDE" option is specified, <cdf-variable-1> will be created with the specified
value, if it had not yet been defined. If it had already been defined, it will be redefined with
the new value.

Chapter 3 - CDF - Compiler Directing Facility 31 May 2018



GnuCOBOL 3.0 rcl [03May2018] Programmer’s Guide 71

3.5. >>IF

:

CDF >>IF Directive Syntax

>>JF CDF-Conditional-Expression-1

[ Program-Source-Lines-1 ]

[ >>ELIF CDF-Conditional-Expression-2

[ >>ELSE

>>END-TIF

[ Program-Source-Lines-2 ] ]...

[ Program-Source-Lines-3 ] ]

CDF-Conditional-Expression Syntax

{ cdf-variable-1 } IS [ NOT ] { DEFINED
{ literal-1

} e L e
{ SET
{ ==
{ CDF-RelOp { cdf-variable-2 }
{ { literal-2 }

R IS A S BT

CDF-RelOp Syntax

<>

or

or

or

or

or

or

GREATER THAN OR EQUAL TO

LESS THAN OR EQUAL TO

LESS THAN

EQUAL TO

The ">>IF" CDF directive causes the GnuCOBOL compiler to process or ignore COBOL source
statements, CDF text-manipulation statements and/or CDF directives depending upon the value
of one or more conditional expressions based upon CDF variables.

1. The reserved words "IS", "THAN" and "TO" are optional and may be included, or not, at

31 May 2018

Chapter 3 - CDF - Compiler Directing Facility



72 GnuCOBOL 3.0 rcl [03May2018] Programmer’s Guide

the discretion of the programmer. The presence or absence of these words has no effect
upon the program.

2. Each ">>IF" directive must be terminated by an ">>END-IF" directive.
3. There may be any number of ">>ELIF" clauses following an ">>IF", including zero.

4. There may no more than one ">>ELSE" clause following an ">>IF". When ">>ELSE" is
used, it must follow the ">>IF" and all ">>ELIF" clauses.

5. Only one of the <<Program-Source-Lines-n>> block of statements that lie within the scope
of the ">>IF"-">>END-IF" may be processed by the compiler. Which one (if any) that gets
processed will be decided as follows:

A. Each <<CDF-Conditional-Expression-n>> will be evaluated, in turn, in the sequence
in which they are coded in the >>IF statement and any ">>ELIF" clauses that may
be present until one evaluates to TRUE. Once one of them evaluates to TRUE, the
<< Program-Source-Lines-n>> block of code that corresponds to the TRUE <<CDF-
Conditional- Expression-n>> will be one that is processed. All others within the ">>IF"-
">>END-IF" scope will be ignored.

B. If no <<CDF-Conditional-Ezxpression>> evaluates to TRUE, and there is an ">>ELSE"
clause, the <<Program-Source-Lines-3>> block of statements following the ">>ELSE"
clause will be processed by the compiler and all others within the ">>IF"-">>END-IF"
scope will be ignored.

C. If no <<CDF-Conditional-Expression-n>> evaluates to TRUE and there is no ">>ELSE"
clause, then none of the <<Program-Source-Lines-n>> block of statements within the
">>IF"-">>END-IF" scope will be processed by the compiler.

D. If the <Program-Source-Lines-n>> statement block selected for processing is empty,
no error results — there will just be no code generated from the ">>IF"-">>END-IF"
structure.

6. A <<Program-Source-Lines-n>> block may contain any valid COBOL or CDF code.

7. The following points pertain to any << CDF-Conditional-Expression-n>>:

A. The "DEFINED" option tests for whether <cdf-variable-1> has been defined, but not yet
assigned a value (">>DEFINE ... OFF"); use the "NOT" option to test for the variable
not being defined.

B. The "SET" option tests for whether <cdf-variable-1> has been given a value, either via
a ">>SET" statement or via a ">>DEFINE" without the "OFF" option.

C. Two CDF variables, two literals or a single CDF variable and a single literal may
be compared against each other using a relational operator. Unlike the standard Gnu-
COBOL "IF" statement (see [IF], page 302), multiple comparisons cannot be "AND"ed
or "OR"ed together; you may nest a second ">>IF" inside the first, however, to simulate
an "AND" and an "OR" may be simulated via the ">>ELIF" option.

D. The "<>" symbol stands for "NOT EQUAL TO".

Chapter 3 - CDF - Compiler Directing Facility 31 May 2018



GnuCOBOL 3.0 rcl [03May2018] Programmer’s Guide 73

:

3.6. >>SET
CDF >>SET Directive Syntax }
>>SET { [ CONSTANT ] cdf-variable-1 literal-1 ] }
””””” { -~ }
{ SOURCEFORMAT AS FIXED|FREE }
{ ooy ey e }
{ NOFOLDCOPYNAME }
{ " }
{ FOLDCOPYNAME AS UPPER|LOWER }

The ">>SET" CDF directive provides an alternate means of performing the actions of the
">>DEFINE" and ">>SOURCE" directives, as well as a means of controlling the compiler’s "-free"
switch, "-fixed" switch and "-ffold-copy" switch from within program source code.

1.

The reserved word "AS" is optional (only on the "SOURCEFORMAT" and "FOLDCOPYNAME"
clauses) and may be included, or not, at the discretion of the programmer. The presence
or absence of this word has no effect upon the program.

CDF variables defined in this way become undefined once an "END PROGRAM" or "END
FUNCTION" directive is encountered in the input source.

The "FOLDCOPYNAME" option provides the equivalent of specifying the compiler
"-ffold-copy=xxx" switch, where "xxx" is either "UPPER" or "LOWER".

The "NOFOLDCOPYNAME" option turns off the effect of either the ">>SET FOLDCOPYNAME"
statement or the compiler "-ffold-copy=xxx" switch.

If the "CONSTANT" option is used, <literal-1> must also be used. This option provides
another means of defining constants that may be used anywhere in the program that a
literal could be specified.

The remaining options of the ">>SET" CDF directive provide equivalent functionality to
the ">>DEFINE" and ">>SOURCE" directives, as follows:

A. ">>SET <cdf-variable-1>" = ">>DEFINE <cdf-variable-1> AS OFF"

B. ">>SET <cdf-variable-1> AS <literal-1>" = ">>DEFINE <cdf-variable-1> AS
<literal-1>"

C. ">>SET CONSTANT <cdf-variable-1> <literal-1>" = ">>DEFINE CONSTANT
<cdf-variable-1> <literal-1>"

D. ">>SET SOURCEFORMAT AS FIXED" = ">>SOURCE FORMAT IS FIXED"

E. ">>SET SOURCEFORMAT AS FREE" = ">>SOURCE FORMAT IS FREE"

31 May 2018 Chapter 3 - CDF - Compiler Directing Facility



74 GnuCOBOL 3.0 rcl [03May2018] Programmer’s Guide

3.7. >SOURCE

[ CDF >>SOURCE Directive Syntax }

>>SO0URCE FORMAT IS FIXED|FREE|VARIABLE

The ">>SOURCE" CDF directive puts the compiler into "FIXED" or "FREE" source-code format
mode. This, in effect, provides yet another mechanism for controlling the compiler’s "-free"
switch and "-fixed" switch.

1. The reserved words "FORMAT" and "IS" are optional and may be included, or not, at the
discretion of the programmer. The presence or absence of these words has no effect upon
the program.

2. You may switch between "FIXED" and "FREE" mode as desired.
3. You may also use the ">>SET" CDF directive to perform this function.

4. If the compiler is already in the specified mode, this statement will have no effect.

Chapter 3 - CDF - Compiler Directing Facility 31 May 2018



GnuCOBOL 3.0 rcl [03May2018] Programmer’s Guide 75

3.8. >TURN

[ CDF >>TURN Directive Syntax
>>TURN { exception-name-1 [ file-name-1 ]... }...
{ OFF }
{ }
{ CHECKING ON [ WITH LOCATION ] }

The directive will (de-)activating exception checks.

31 May 2018 Chapter 3 - CDF - Compiler Directing Facility



76 GnuCOBOL 3.0 rcl [03May2018] Programmer’s Guide

3.9. >>D

[ CDF >>D Directive Syntax }

>>D

The directive removes all floating debug lines if debug mode not active. Otherwise will ignore
the directive part of the line.

Chapter 3 - CDF - Compiler Directing Facility 31 May 2018



GnuCOBOL 3.0 rcl [03May2018] Programmer’s Guide 7

3.10. >>DISPLAY

[ CDF >>DISPLAY Directive Syntax }

>>DISPLAY source-text [ VCS = version-string ]

The directive is a v1.0 extension and will display messages during compilation.

31 May 2018 Chapter 3 - CDF - Compiler Directing Facility



78 GnuCOBOL 3.0 rcl [03May2018] Programmer’s Guide

3.11. >PAGE

[ CDF >>PAGE Directive Syntax

>>PAGE

The directive allows usage of the IBM paging controls namely - EJECT, SKIP1, SKIP2, SKIP3
and TITLE.

Chapter 3 - CDF - Compiler Directing Facility 31 May 2018



GnuCOBOL 3.0 rcl [03May2018] Programmer’s Guide 79

3.12. >>LISTING

[ CDF >>LISTING Directive Syntax }

>>LISTING {ON}
””””””””” {0FF}

The directive allows the program listing to be de-(activated).

31 May 2018 Chapter 3 - CDF - Compiler Directing Facility



80 GnuCOBOL 3.0 rcl [03May2018] Programmer’s Guide

3.13. >LEAP-SECONDS

[ CDF >>LEAP-SECONDS Directive Syntax

>>LEAP-SECONDS

The ">>LEAP-SECONDS" CDF directive is syntactically recognized but is otherwise
non-functional.

Allows for more than 60 seconds per minute.

Chapter 3 - CDF - Compiler Directing Facility 31 May 2018



GnuCOBOL 3.0 rcl [03May2018] Programmer’s Guide 81

3.14. * Directives

{ CDF * Directive Syntax J

$ (Dollar) Directives - Active.
These directives are active and have the same function as ones starting with >>:

$DISPLAY ON|OFF
$SET

$IF

$ELIF

$ELSE-IF

$END

It is recommend to use the standard directives only instead of the MF directives
(when possible) as these have a a higher chance for being portable.

$ (Dollar) Directives - Not Active.
These are NOT active and will produce a warning message:

$DISPLAY VCS ...

qOffers support for MF Compiler Directives.

End of Chapter 3 — CDF - Compiler Directing Facility

31 May 2018 Chapter 3 - CDF - Compiler Directing Facility






GnuCOBOL 3.0 rcl [03May2018] Programmer’s Guide 83

4. IDENTIFICATION DIVISION

[ IDENTIFICATION DIVISION Syntax
[{ IDENTIFICATION } DIVISION. ]

{ ~rrmmm e y oo

{ID }

{ PROGRAM-ID. } program-id [ AS {literal-1 }] [ Type-Clause ]
{ e T {program name }]
{ FUNCTION-ID. } { literal-1 } [ AS literal-2 ].

""""""""""" { function-name }

[ DEFAULT ROUNDED MODE IS {AWAY-FROM-ZERO
~~~~~~~~~~~~~~ {NEAREST-AWAY-FROM-ZERO
{NEAREST-EVEN
{NEAREST-TOWARDS-ZERO
{PROHIBITED
{TOWARDS-GREATER
{TOWARDS-LESSER
{TRUNCATION
[ENTRY-CONVENTION IS {COBOL }
~~~~~~~~~~~~~~~~ {EXTERN }
{STDCALL }]
[ AUTHOR. comment-1. ]

[ DATE-COMPILED. comment-2. 1]

[ DATE-MODIFIED. comment-3. 1]

I s T SRV

[ DATE-WRITTEN. comment-4. 1]

[ INSTALLATION. comment-5. ]

[ REMARKS. comment-6. ]

[ SECURITY. comment-7. ]

The "AUTHOR", "DATE-COMPILED", "DATE-MODIFIED", "DATE-WRITTEN", "INSTALLATION",
"REMARKS" and "SECURITY" paragraphs are supported by GNU COBOL only to provide
compatibility with programs written for the ANS1974 (or earlier) standards. As of the
ANS1985 standard, these clauses have become obsolete and should not be used in new
programs.

[ PROGRAM-ID Type Clause Syntax

31 May 2018 Chapter 4 - IDENTIFICATION DIVISION



84

GnuCOBOL 3.0 rcl [03May2018] Programmer’s Guide

IS [ COMMON ] [ INITIAL|RECURSIVE PROGRAM ]

The identification division provides basic identification of the program by giving it a name and
optionally defining some high-level characteristics via the eight pre-defined paragraphs that may
be specified.

1.
2.

The paragraphs shown above may be coded in any sequence.

The reserved words "AS", "IS" and "PROGRAM" are optional and may be included, or not,
at the discretion of the programmer. The presence or absence of these words has no effect
upon the program.

A Type Clause may be coded only when "PROGRAM-ID" is specified. If one is coded, either
"COMMON", "COMMON INITIAL" or "COMMON RECURSIVE" must be specified.

While the actual "IDENTIFICATION DIVISION" or "ID DIVISION" header is optional, the
"PROGRAM-ID" / "FUNCTION-ID" paragraphs are not; only one or the other, however, may
be coded.

The compiler’s "-Wobsolete" switch will cause the GnuCOBOL compiler to issue warnings
messages if these (or any other obsolete syntax) is used in a program.

If specified, <literal-1> must be an actual alphanumeric literal and may not be a figurative
constant.

The "PROGRAM-ID" and "FUNCTION-ID" paragraphs serve to identify the program to the
external (i.e. operating system) environment. If there is no "AS" clause present, the
<program-id> will serve as that external identification. If there is an "AS" clause speci-
fied, that specified literal will serve as the external identification. For the remainder of
this document, that "external identification" will be referred to as the primary entry-point
name.

The "INITIAL", "COMMON" and "RECURSIVE" words are used only within subprograms serv-
ing as subroutines. Their purposes are as follows:

A. "COMMON" should be used only within subprograms that are nested subprograms. A
nested subprogram declared as "COMMON" may be called from any nested program in
the source file being compiled, not just those "above" it in the nesting structure.

B. The "RECURSIVE" clause, if any, will cause the compiler to generate different object
code for the subprogram that will enable it to invoke itself and to properly return back
to the program that invoked it.

User-defined functions (i.e. "FUNCTION-ID") are always recursive.

C. The "INITIAL" clause, if specified, guarantees the subprogram will be in its initial (i.e.
compiled) state each and every time it is executed, not just the first time.

End of Chapter 4 — IDENTIFICATION DIVISION

Chapter 4 - IDENTIFICATION DIVISION 31 May 2018



GnuCOBOL 3.0 rcl [03May2018] Programmer’s Guide 85

5. ENVIRONMENT DIVISION

:

ENVIRONMENT DIVISION Syntax

ENVIRONMENT DIVISION.

SOURCE-COMPUTER. Compilation-Computer-Specification . 1]
OBJECT-COMPUTER. Execution-Computer-Specification . 1]
SPECTAL-NAMES. Program-Configuration-Specification . ]
REPOSITORY. Function-Specification... . 1]

FILE-CONTROL. General-File-Description... . ]

[ I-0-CONTROL. File-Buffering Specification... . ]

This division defines the external computer environment in which the program will be operating.
This includes defining any files that the program may be .

e If both optional sections of this division are coded, they must be coded in the sequence

shown.
The paragraphs within the sections may be coded in any order.

These sections consist of a series of specific, pre-defined, paragraphs ("SOURCE-COMPUTER"
and "OBJECT-COMPUTER", for example), each of which serves a specific purpose. If no code is
required for the purpose one of the paragraphs serves, the entire paragraph may be omitted.

If any of the paragraphs within one of the sections are coded, the section header itself must
be coded.

If none of the paragraphs within one of the sections are coded, the section header itself may
be omitted.

If none of the sections within the environment division are coded, the "ENVIRONMENT
DIVISION." header itself may be omitted.

31 May 2018 Chapter 5 - ENVIRONMENT DIVISION



86 GnuCOBOL 3.0 rcl [03May2018] Programmer’s Guide

5.1. CONFIGURATION SECTION

[ CONFIGURATION SECTION Syntax

CONFIGURATION SECTION.

[ SOURCE-COMPUTER. Compilation-Computer-Specification . 1]

[ OBJECT-COMPUTER. Execution-Computer-Specification . ]

[ SPECIAL-NAMES. Program-Configuration-Specification . ]

[ REPOSITORY. Function-Specification... . ]

This section defines the computer system upon which the program is being compiled and exe-
cuted and also specifies any special environmental configuration or compatibility characteristics.

1. The four paragraphs in this section may be specified in any order but if not in this order,
a warning will be issued.

2. The configuration section is not allowed in a nested subprogram — nested programs will
inherit the configuration section settings of their parent program.

3. If none of the features provided by the configuration section are required by a program, the
entire "CONFIGURATION SECTION." header may be omitted from the program.

Chapter 5 - ENVIRONMENT DIVISION 31 May 2018



GnuCOBOL 3.0 rcl [03May2018] Programmer’s Guide 87

5.1.1. SOURCE-COMPUTER

[

SOURCE-COMPUTER Syntax

SOURCE-COMPUTER. computer-name [ WITH DEBUGGING MODE ]

This paragraph defines the computer upon which the program is being compiled and provides
one way in which debugging code embedded within the program may be activated.

1.

The reserved word "WITH" is optional and may be included, or not, at the discretion of the
programmer. The presence or absence of this word has no effect upon the program.

This paragraph is not allowed in a nested subprogram — nested programs will inherit the
"SOURCE-COMPUTER" settings of their parent program.

The value specified for <computer-name> is irrelevant, provided it is a valid COBOL word
that does not match any GnuCOBOL reserved word. The <computer-name> value may in-
clude spaces. This need not match the <computer-name> used with the "0BJECT-COMPUTER"
paragraph, if any.

The "DEBUGGING MODE" clause, if present, will inform the compiler that debugging lines
(those with a "D" in column 7 if Fixed Source Mode is in effect, or those prefixed with
a ">>D" if Free Source Mode is in effect) — normally treated as comments — are to be
compiled.

Even without the "DEBUGGING MODE" clause, it is still possible to compile debugging lines.
Debugging lines may also be compiled by specifying the "-fdebugging-line" switch to the
GnuCOBOL compiler.

31 May 2018 Chapter 5 - ENVIRONMENT DIVISION



88

GnuCOBOL 3.0 rcl [03May2018] Programmer’s Guide

5.1.2. OBJECT-COMPUTER

[

OBJECT-COMPUTER Syntax

0BJECT-COMPUTER. [ computer-name ]

[ CHARACTER CLASSIFICATION IS { locale-name-1

]
”””””””””””””” { LOCALE

}
}
}
{ USER-DEFAULT }
}
}

{ SYSTEM-DEFAULT

The "MEMORY SIZE" and "SEGMENT-LIMIT" clauses are syntactically recognized but are other-
wise non-functional.

This paragraph describes the computer upon which the program will execute.

1.

The <computer-name>, if specified, must immediately follow the "OBJECT-COMPUTER" para-
graph name. The remaining clauses may be coded in any sequence.

The reserved words "CHARACTER", "IS", "PROGRAM" and "SEQUENCE" are optional and may
be included, or not, at the discretion of the programmer. The presence or absence of these
words has no effect upon the program.

The value specified for <computer-name>, if any, is irrelevant provided it is a valid COBOL
word that does not match any GnuCOBOL reserved word. The <computer-name> may in-
clude spaces. This need not match the <computer-name> used with the "SOURCE-COMPUTER"
paragraph, if any.

The "OBJECT-COMPUTER" paragraph is not allowed in a nested subprogram — nested pro-
grams will inherit the "OBJECT-COMPUTER" settings of their parent program.

The "COLLATING SEQUENCE" clause allows you to specify a customized character collating
sequence to be used when alphanumeric values are compared to one another. Data will still
be stored in the character set native to the computer, but the logical sequence in which
characters are ordered for comparison purposes can be altered from that defined by the
computer’s native character set. The <alphabet-name-1> you specify needs to be defined in
the "SPECIAL-NAMES" (see [SPECIAL-NAMES], page 90) paragraph.

If no "COLLATING SEQUENCE" clause is specified, the collating sequence implied by the
character set native to the computer (usually ASCII) will be used.

The optional "CLASSIFICATION" clause may be used to specify a locale for the environment

Chapter 5 - ENVIRONMENT DIVISION 31 May 2018



GnuCOBOL 3.0 rcl [03May2018] Programmer’s Guide 89

in which the program will be executing, for the purpose of influencing the upper-case and
lower-case mappings of characters for the "UPPER-CASE" (see [UPPER-CASE], page 481)
and "LOWER-CASE" (see [LOWER-CASE], page 428) intrinsic functions and the classification
of characters for the "ALPHABETIC", "ALPHABETIC-LOWER" and "ALPHABETIC-UPPER" class
tests. The definitions of these classes will be taken from the cultural convention specification
("LC_CTYPE") from the specified locale.

The meanings of the four locale specifications are as follows:

A.
B.

C.

D.

<locale-name-1> references a "LOCALE" (see [SPECIAL-NAMES], page 90) definition.

The keyword "LOCALE" refers to the current locale (in effect at the time the program
is executed)

The keyword "USER-DEFAULT" references the default locale specified for the user cur-
rently executing this program.

The keyword "SYSTEM-DEFAULT" denotes the default locale specified for the computer
upon which the program is executing.

8. Absence of a "CLASSIFICATION" clause will cause character classification to occur according
to the rules for the computer’s native character set (ASCII, EBCDIC, ...).

31 May 2018 Chapter 5 - ENVIRONMENT DIVISION



90 GnuCOBOL 3.0 rcl [03May2018] Programmer’s Guide

5.1.3. SPECIAL-NAMES

{ SPECIAL-NAMES Syntax

SPECIAL-NAMES.

[ CONSOLE IS CRT ]

[ device-name-1 IS mnemonic-name-2 J...
[ feature-name-1 IS mnemonic-name-3 J...
[ Alphabet-Clause ]...

[ Class-Definition-Clause ]...

[ Switch-Definition-Clause J...

[ Symbolic-Characters-Clause J]...

The "EVENT STATUS" and "SCREEN CONTROL" clauses are syntactically recognized but are oth-
erwise non-functional.

<< Alphabet-Name-Clause>>, << Class-Definition-Clause>>,
<< Switch-Definition-Clause>> and <<Symbolic- Characters-Clause>>
are discussed in detail in the next four sections.

The "SPECIAL-NAMES" paragraph provides a means for specifying various program and operating
environment configuration options.

1. The various clauses that may be specified within the "SPECIAL-NAMES" paragraph may be

Chapter 5 - ENVIRONMENT DIVISION 31 May 2018



GnuCOBOL 3.0 rcl [03May2018] Programmer’s Guide 91

10.

11.

12.

coded in any order.

The reserved word "IS" is optional and may be included, or not, at the discretion of the
programmer. The presence or absence of this word has no effect upon the program.

The "SPECIAL-NAMES" paragraph is not allowed in a nested subprogram — nested programs
will inherit the "SPECIAL-NAMES" settings of their parent program.

Only the final clause specified within this paragraph should be terminated with a period.

The "CALL-CONVENTION" clause allows a decimal integer, representing a series of ON/OFF
switch settings, to be associated with a mnemonic name which may then be coded on a
"CALL" statement (see [CALL], page 264). The switch settings defined by this mnemonic
will then control how the linkage to a subroutine invoked by the "CALL" statement that
references <mnemonic-name-1> will be handled.

The "CONSOLE IS CRT" clause, if specified, will cause a "DISPLAY" statement lacking an
explicit "UPON" clause to be treated as a "DISPLAY screen-data-item" statement (see
[DISPLAY screen-data-item|, page 279), and any "ACCEPT" statement lacking a "FROM"
clause to be treated as a "ACCEPT screen-data-item" statement (see [ACCEPT screen-
data-item], page 246).

If the "CRT STATUS" clause is not specified, an implicit "COB-CRT-STATUS" identifier (with
a "PICTURE 9(4)") will be allocated for the purpose of receiving screen "ACCEPT" statuses.
If "CRT STATUS" is specified, then <identifier-1> must be defined in the program as a
"PICTURE 9(4)" field.

The "CURRENCY SIGN" clause may be used to redefine the character to be used as a currency
sign in a "PICTURE" (see [PICTURE], page 186) clause. The default currency sign is a dollar-
sign ($) You may specify any character except "0Q"-"9", 6 "AM-"Z" Mgzt tgn on_non o
n . n ||*ll II/II n ; n n (ll Il) n n—=n "\|| quote (") or Sp&Ce.

The "CURSOR IS" clause allows you to specify a 4- or 6-character data item into which the
cursor screen location at the time a screen "ACCEPT" is satisfied. The value will be returned
as rrecc or rrrece, depending upon the length of the specified <identifier-2>, where rr and rrr
represent the row number (starting at zero) and cc and ccc represent the column number
(also starting at zero). There is no default data item allocated for this data if the "CURSOR
IS" clause is not specified, and it is the programmer’s responsibility to define <identifier-2>
if the clause is specified.

The "DECIMAL POINT IS COMMA" clause reverses the definition of the "," and "." characters
when they are used as "PICTURE" editing symbols and within numeric literals. This can
have unwanted side-effects - see [Punctuation|, page 36.

The "LOCALE" clause may be used to associate external OS-defined locale names (<literal-
2>) with an internal name (<locale-name-1>) that may then be referenced within the pro-
gram. Locale names are defined by the Operating System and/or C compiler GnuCOBOL
will be utilizing on your computer.

The following is the list of possible locale codes, for example, that would be available on
a Windows computer running a GnuCOBOL version that was built utilizing the MinGW
Unix-emulator and the GNU C compiler (gcc):

A af_ZA, am_ET, ar_AE, ar_BH, ar_DZ, ar_EG, ar_IQ, ar_JO, ar_. KW, ar_LB,
ar_.LY, ar_MA, ar_OM, ar_QA, ar_SA, ar_SY, ar_TN, ar_YE, arn_CL, as_IN,
az_Cyrl_AZ, az_Latn_AZ

31 May 2018 Chapter 5 - ENVIRONMENT DIVISION



92

/= O a W

w = L N O Z 2 B )R = = =D o =

< X g < < 4

N

GnuCOBOL 3.0 rcl [03May2018] Programmer’s Guide

ba_R, be_BY, bg_BG, bn_IN bo_BT, bo_CN, br_FR, bs_Cyrl_BA, bs_Latn_BA
ca_ES, ¢s_CZ, cy_GB
da_DK, de_AT, de_CH, de_DE, de_LI, de_LU, dsb_DE, dv_.MV

el_GR, en_029, en_AU, en_BZ, en_CA, en_GB, en_IE, en_IN, en_JM, en_ MY
en_NZ, en_PH, en_SG, en_TT, en_US, en_ZA, en_ZW, es_AR, es_BO, es_CL,
es_CO, es_CR, es_DO, es_EC, es_ES, es_GT, es_HN, es_MX, es_NI, es_PA,
es_PE, es_PR, es_PY, es_SV, es_US, es_UY es_VE, et_EE, eu_ES

fa_IR, fi_FI, fil_PH, fo_FO, fr_BE, fr_CA, fr_CH, fr_FR, fr LU, fr_MC, fy_NL
ga_IE, ghz_AF, gl ES, gsw_FR, gu_IN

ha_Latn_NG, he_IL, hi_IN, hr_BA, hr_HR, hu_HU, hy_AM

id_ID, ig_NG, ii-CN, is_IS, it_CH, it_IT, iu_Cans_CA, iu_Latn_CA

ja_JP

ka_GE, kh_KH, kk_KZ, kl_GL, kn_IN, ko_KR, kok_IN, ky_KG

Ib_LU, lo_LA, 1t_LT, Iv_.LV

mi_NZ, mk_MK, ml_IN, mn_Cyrl. MN, mn_Mong CN moh_CA, mr_IN,
ms_BN, ms_ MY, mt MT

nb_NO, ne_NP, nl_BE, nl_NL, nn_NO, ns_ZA
oc_FR, or_IN

pa_IN, pl_PL, ps_AF, pt_BR, pt_PT
qut_GT, quz_BO, quz_EC, quz_PE

rm_CH, ro_RO, ru_RU, rw_RW

sa_IN, sah_RU, se_FI, se_NO se_SE, si_LK, sk_SK, sl_SI, sma_NO, sma_SE,
smj_NO, smj_SE, smn_FI, sms_FI, sq_AL, sr_Cyrl.BA, sr_Cyrl_CS,
sr_Latn_BA, sr_Latn_CS, sv_FI, sv_SE, sw_KE syr_SY

ta_IN, te_IN, tg_Cyrl_TJ, th_. TH tk_TM, tmz_Latn_DZ, tn_ZA, tr_IN, tr_TR,
tt_RU

ug_CN, uk_UA, ur_PK, uz_Cyrl_UZ, uz_Latn_UZ
vi-VN

wen_DE, wo_SN

xh_ZA

yo_-NG

zh_CN, zh_HK, zh_MO, zh_SG, zh_TW, zu_ZA

Chapter 5 - ENVIRONMENT DIVISION 31 May 2018



GnuCOBOL 3.0 rcl [03May2018] Programmer’s Guide 93

13.

14.

15.

The "NUMERIC SIGN TRAILING SEPARATE" specification causes all signed numeric "USAGE
DISPLAY" data items to be created as if the "SIGN IS TRAILING SEPARATE CHARACTER"
clause was included in their definitions.

The "<device-name-1> IS <mnemonic-name-2>" clause allows you to specify an alternate
name (<device-name-1>) for one of the built-in GnuCOBOL device name <mnemonic-name-
2>. The list of device names built-into GnuCOBOL, and the physical device associated with
that name, are as follows:

"CONSOLE"
This is the (screen-mode) display of the PC or Unix system.

"STDIN"

"SYSIN"

"SYSIPT"
These devices (they are all synonymous) represent standard system input (pipe
0). On a PC or UNIX system, this is typically the keyboard. The contents of
a file may be delivered to a GnuCOBOL program for access via one of these
device names by adding the sequence "0< filename" to the end of the programs
execution command.

"PRINTER"

"STDOUT"

"SYSLIST"

"SYSLST"

"SYSQUT"
These devices (they are all synonymous) represent standard system output (pipe
1). On a PC or UNIX system, this is typically the display. Output sent to one
of these devices by a GnuCOBOL program can be sent to a file by adding the
sequence "1> filename" to the end of the programs execution command.

"STDERR"

"SYSERR"

These devices (they are synonymous) represent standard system error output
(pipe 2). On a PC or UNIX system, this is typically the display. Output sent to
one of these devices by a GnuCOBOL program can be sent to a file by adding
the sequence "2> filename" to the end of the programs execution command.

The "<feature-name-1> IS <mnemonic-name-3>" clause allow for mnemonic names to
be assigned to up to the 13 printer channel (i.e. vertical page positioning) position fea-
ture names "Cnn" (nn=01-12) and "CSP". Once a channel position has been assigned
a mnemonic name, statements of the form "WRITE <record-name> AFTER ADVANCING
<mnemonic-name-3>" may be coded to write the specified print record at the channel po-
sition assigned to <mnemonic-name-3>.

Printers supporting channel positioning are generally mainframe-type line printers. When
writing to printers that do not support channel positioning, a formfeed will be issued to the
printer.

The "CSP" positioning option stands for "No Spacing". Testing on a MinGW build of
GnuCOBOL shows that this too results in a formfeed being issued.

31 May 2018 Chapter 5 - ENVIRONMENT DIVISION



94 GnuCOBOL 3.0 rcl [03May2018] Programmer’s Guide

5.1.3.1. Alphabet-Name-Clause

[ SPECIAL-NAMES Alphabet-Clause Syntax

ALPHABET alphabet-name-1 IS { ASCII

-~
R
R
b3
b3
R
R
O . il s a A=)

{ Literal-Clause...

[ SPECIAL-NAMES ALPHABET Literal-Clause Syntax

literal-1 [ { THRU|THROUGH literal-2 7} ]
S it }
{ {ALSO literal-3}... }

The "ALPHABET" clause provides a means for relating a name to a specified character code set
or collating sequence, including those you define yourself using the <literal-1> option.

1. The reserved word "IS" is optional and may be included, or not, at the discretion of the
programmer. The presence or absence of this word has no effect upon the program.

The reserved words "THRU" and "THROUGH" are interchangeable.
GnuCOBOL considers "ASCII", "STANDARD-1" and "STANDARD-2" to be interchangeable.

"NATIVE" specifies the system default character set.

AN B S

The following points apply to using the <literal-n> specifications to compose a custom
character set:

A. The <literal-n> values are either integers or alphanumeric quoted characters. These
represent a single character in the "NATIVE" character set, either by it’s actual text
value (alphanumeric quoted character) or by ordinal position in the "NATIVE" character
set (integer),

B. The sequence in which characters are defined in this clause specifies the relative order
those characters should have when comparisons are made using this alphabet.

C. Character positions in this list do not affect the actual binary storage values used for
the characters — binary values will still be those of the "NATIVE" character set.

D. You may specify any of the figurative constants "SPACE", "SPACES", "ZERO", "ZER0S",

Chapter 5 - ENVIRONMENT DIVISION 31 May 2018



GnuCOBOL 3.0 rcl [03May2018] Programmer’s Guide 95

"ZEROES", "QUOTE", "QUOTES", "HIGH-VALUE", "HIGH-VALUES", "LOW-VALUE" or
"LOW-VALUES" for any of the <literal-1>, <literal-2> or <literal-3> specifications.

6. Once you have defined an alphabet name, that alphabet name may be used on specifications
in "CODE-SET", "COLLATING SEQUENCE", or "SYMBOLIC CHARACTERS" clauses elsewhere in
the program.

31 May 2018 Chapter 5 - ENVIRONMENT DIVISION



96

GnuCOBOL 3.0 rcl [03May2018] Programmer’s Guide

5.1.3.2. Class-Definition-Clause

:

SPECIAL-NAMES Class-Definition-Clause Syntax

CLASS class-name-1 IS { literal-1 [ THRU|THROUGH literal-2 ] }...

The reserved word "IS" is optional and may be included, or not, at the discretion of the
programmer. The presence or absence of this word has no effect upon the program.

The reserved words "THRU" and "THROUGH" are interchangeable.
Both <literal-1> and <literal-2> must be alphanumeric literals of length 1.

The literal(s) specified on this clause define the possible characters that may be found in a
data item’s value in order to be considered part of the class.

For example, the following defines a class called "Hexadecimal", the definition of which
specifies the only characters that may be present in an alphanumeric data item if that data
item is to be part of the "Hexadecimal" class:

CLASS Hexadecimal IS ’0’ THRU ’9’
A’ THRU °F°
’a’ THRU ’f°
Once class "Hexadecimal" has been defined, program code could then use a statement such
as "IF input-item IS Hexadecimal" to determine if the value of characters in a data item
are valid according to that class.

Chapter 5 - ENVIRONMENT DIVISION 31 May 2018



GnuCOBOL 3.0 rcl [03May2018] Programmer’s Guide 97

5.1.3.3. Switch-Definition-Clause

:

SPECIAL-NAMES Switch-Definition-Clause Syntax }

switch-name-1 [ IS mnemonic-name-1 ]

[ ON STATUS IS condition-name-1 ]

[ OFF STATUS IS condition-name-2 ]

The switch-definition clause associates a condition-name with a run-time execution switch so
that the status of that switch may be tested from within a program.

1.

The reserved words "IS" and "STATUS" are optional and may be included, or not, at the
discretion of the programmer. The presence or absence of these words has no effect upon
the program.

The valid <switch-name-1> names are "SWITCH-n" (n=0-36).

If the program is compiled with the "-fsyntax-extension" switch, the switch names "SwWn"
(n=0-15) are also valid; they correspond to "SWITCH-0" through "SWITCH-15", respec-
tively as well as "SWITCH-16" through "SWITCH-36", "SWITCH 0" through "SWITCH 26"
and "SWITCH A" through "SWITCH Z".

At execution time, each switch will be associated with a "COB_SWITCH_n" run-time envi-
ronment variable (see [Run Time Environment Variables|, page 596), where "n" will have
the value "0" through "15". Any of these sixteen environment variables that have the value
"ON" (regardless of upper- or lower-case value) will be considered to be set "on". Any of
these sixteen environment variables having no value at all or a value other than "ON" will
be considered "OFF".

Fach specified switch must have at least one of a "IS <mnemonic-name-1>", "ON STATUS"
or an "OFF STATUS" option defined for it, otherwise there will be no way to reference the
switch from within a GnuCOBOL program.

The "IS <mnemonic-name-1>" syntax provides a means for setting the switch to either an
ON or OFF value via the "SET" statement (see [SET], page 345).

The "ON STATUS" and "OFF STATUS" syntax provides a way of associating a condition-name
with either the on or off status of the switch, so that status may be tested at execution time
via the "IF" statement (see [IF], page 302).

31 May 2018 Chapter 5 - ENVIRONMENT DIVISION



98

GnuCOBOL 3.0 rcl [03May2018] Programmer’s Guide

5.1.3.4. Symbolic-Characters-Clause

{

SPECIAL-NAMES-Symbolic-Characters-Clause Syntax

SYMBOLIC CHARACTERS

{ symbolic-character-1... IS|ARE integer-1... }...

[ IN alphabet-name-1 ]

This clause may be used to define your own figurative constants.

1.

The reserved words "ARE", "CHARACTERS" and "IS" are optional and may be included, or
not, at the discretion of the programmer. The presence or absence of these words has no
effect upon the program.

There must be exactly as many <integer-1> values specified as there are <symbolic-character-
1> names.

Each symbolic character name will be associated with the corresponding <integer-1>th char-
acter in the alphabet named in the "IN" clause. The integer values are selecting characters
from the alphabet by their ordinal position and not by their numeric value; thus, an integer
of 15 will select the 15th character in the specified alphabet, regardless of the actual numeric
value of the bit pattern that constitutes that character.

If no <alphabet-name-1> is specified, the systems native character set will be assumed.

The following two code examples define the same set of figurative constant names for five
ASCII control characters (assuming that ASCII is the system’s native character set). The
two examples are identical in their effects, even though the manner in which the figurative
constants are defined is different.

SYMBOLIC CHARACTERS NUL IS 1 SYMBOLIC CHARACTERS NUL SOH BEL DC1 DC2
SOH IS 2 ARE 1 2 8 18 19
BEL IS 8
DC1 IS 18
DC2 IS 19

Chapter 5 - ENVIRONMENT DIVISION 31 May 2018



GnuCOBOL 3.0 rcl [03May2018] Programmer’s Guide 99

5.1.4. REPOSITORY

{ intrinsic-function-name-2 INTRINSIC
{ ALL INTRINSIC ~rrommoer

{ REPOSITORY Syntax j
REPOSITORY.
FUNCTION { function-prototype-name-1 [ AS literal-1 ] }..
~~~~~~~~ { ~r }
{ intrinsic-function-name-1 [AS literal-2] }
{ e }
}
}

The REPOSITORY paragraph provides a way to control access to the various built-in intrinsic
functions and any user defined functions that your program will be using.

1. The "REPOSITORY" paragraph is not allowed in a nested subprogram — nested programs
will inherit the "REPOSITORY" settings of their parent program.

2. The "INTRINSIC" clause allows you to flag one or more (or "ALL") built-in intrinsic functions
as being usable without the need to code the keyword "FUNCTION" in front of the function
names.

3. As an alternative to using the "ALL INTRINSIC" clause, you may instead compile your
GnuCOBOL programs using the "-fintrinsics=ALL" switch.

4. The <function-prototype-name-1> option is required to specify the name of a user-defined
function your program will be using. Optionally, should you desire, you may specify an
alias name by which you will reference that user-defined function. Should you wish, you
may also use the "AS" clause to provide an alias name for a built-in intrinsic function.

5. The following example enables all intrinsic functions to be specified without the use of
the "FUNCTION" keyword, (2) names two user-defined functions named "MY-FUNCTION-
1" and "MY-FUNCTION-2" that will be used by the program and (3) specifies the alias
names "SIGMA" for the intrinsic function "STANDARD-DEVIATION" and "MF2" for
"MY-FUNCTION-2".

REPOSITORY.
FUNCTION ALL INTRINSIC.
FUNCTION MY-FUNCTION-1.
FUNCTION MY-FUNCTION-2 AS "MF2".
FUNCTION STANDARD-DEVIATION AS "SIGMA".

A special note about user-defined functions — because you must name a user-defined function
that your program will be using in the "REPOSITORY" paragraph, you may always reference
that function from your program’s procedure division without needing to use the "FUNCTION"
keyword.

31 May 2018 Chapter 5 - ENVIRONMENT DIVISION

100 GnuCOBOL 3.0 rcl [03May2018] Programmer’s Guide

5.2. INPUT-OUTPUT SECTION

[INPUT-OUTPUT SECTION Syntax

[INPUT-OUTPUT SECTION.]

[SELECT-Statement...]
[I-0-CONTROL.]

[MULTIPLE-FILE-Statement]

[SAME-RECORD-Statement]

The "INPUT-0UTPUT" section provides for the definition of any files the program will be accessing
as well as control of the I/O buffering process against those files through the "FILE-CONTROL"
and "I-0-CONTROL" paragraphs, respectively.

1. As the diagram shows, there are three types of statements that may occur in the two
paragraphs of this section. If none of the statements are coded in a particular paragraph,
the paragraph itself may be omitted, otherwise it is required.

2. If neither paragraph is coded, the "INPUT-0UTPUT SECTION." header itself may be omitted,
otherwise it is normally required.

3. If the compiler "config" file you are using has "relaxed-syntax-check" set to "yes",
the "FILE-CONTROL" and "I-0-CONTROL" paragraphs may be specified without the
"INPUT-OUTPUT SECTION." header having been coded.

4. If both statement types are coded in the "I-0-CONTROL" paragraph, the order in which
those statements are coded is irrelevant.

Chapter 5 - ENVIRONMENT DIVISION 31 May 2018

GnuCOBOL 3.0 rcl [03May2018] Programmer’s Guide 101

5.2.1. SELECT

{ SELECT Statement Syntax

SELECT [[NOT] OPTIONAL] file-name-1
[ASSIGN { TO } [{ EXTERNAL }] [{ DISC|DISK
”””””” {UsING } { "y {777 T
{ DYNAMIC } { DISPLAY

}] [{ identifier-1 }]]
}
}
””””””” { ~wm~ = +
}
}
}

{ word-1 }
{ literal-1 T

~
R
R
R
R
R
R
R
R
R
R
R
R
R
[S-]

I'H
=
=
=
[S]
o
=
L S o R

{ TAPE

[COLLATING SEQUENCE IS alphabet-name-1]

[LOCK MODE IS { MANUAL|AUTOMATIC } 1
R { ~rommy v }
{ EXCLUSIVE [WITH { LOCK ON MULTIPLE RECORDS }] }
””””””””” { "7 v oy mmmeae
{ LOCK ON RECORD }
[ORGANIZATION-Clause] { "o o s }
{ ROLLBACK }

{ ALL OTHER }]
{ }

{ NO OTHER }
{
{

o }
READ ONLY }

The "COLLATING SEQUENCE", "RECORD DELIMITER", "RESERVE" and "ALL OTHER" clauses are
syntactically recognized but are otherwise non-functional.

The "SELECT" statement creates a definition of a file and links that COBOL definition to the
external operating system environment.

1. The reserved words "AREAS", "IS", "MODE", "OTHER", "SEQUENCE", "TO", "USING" and

31 May 2018 Chapter 5 - ENVIRONMENT DIVISION

102 GnuCOBOL 3.0 rcl [03May2018] Programmer’s Guide

"WITH" are optional and may be included, or not, at the discretion of the programmer. The
presence or absence of these words has no effect upon the program.

2. After <file-name-1>, the various clauses may be coded in any sequence.
3. A period must follow the last coded clause.

4. The "OPTIONAL" clause, to be used only for files that will be used to provide input data to
the program, indicates the file may or may not actually be available at run-time. Attempts
to "OPEN" an "OPTIONAL" file when the file does not exist will receive a special non-fatal
file status value (see status 05 in the list of file status values below) indicating the file is not
available; a subsequent attempt to "READ" that file will return an "AT END" (end-of-file)
condition. Optionally, files may be designated as "NOT OPTIONAL", if desired. This is useful
when specifying the compiler’s "-foptional-file" switch, which automatically makes all
files "OPTIONAL" except for those explicitly declared as "NOT OPTIONAL".

5. The <file-name-1> value that you specify will be the name by which you will reference the
file within your program. This name should be formed according to the rules for user-defined
names (see [User-Defined Words], page 9).

6. The optional "ASSIGN" clause specifies how — at runtime, when <file-name-1> is opened
— either a logical device (STDIN, STDOUT) or a file anywhere in one of the currently-
mounted file systems will be associated with <file-name-1>, as follows:

A. There are three components to the "ASSIGN" clause — a <<Type>> specification
("EXTERNAL", "DYNAMIC" or neither), a <<Dewvice>> (the list of device choices) and
a <<Locator>> (shown as a choice between <identifier-1>, <word-1> and <literal-1>).

B. "ASSIGN TO DISC ’<file-name-1>’" will be assumed if there is no "ASSIGN" clause
on a "SELECT".

C. If an "ASSIGN" clause is coded without a <<Dewvice>>, the device "DISC" will be as-
sumed.

D. If a <<Locator>> clause is coded, the COBOL file <file-name-1> will be attached to a
data file within any file system that is mounted and available to the executing program
at the time <file-name-1> is opened. How that file is identified varies, depending upon
the specified <<Locator>>, as follows:

a. If <literal-1> is coded, the value of the literal will serve as the File Location String
that will identify the data file.

b. If <identifier-1> is coded, the value of the identifier will serve as the File Location
String that will identify the data file.

c. If <word-1> (a syntactically valid word not duplicating that of a reserved or user-
defined word) is coded, and a <<Type>> of "EXTERNAL" is specified, <word-1>
itself will serve as the File Location String that will identify the data file. If,
however, a <<Type>> of "EXTERNAL" was not specified, the compiler will create a
"PIC X(1024)" data item named <word-1> within the program; the contents of
that data item at the time the program opens <file-name-1> will then serve as the
File Location String that will identify the data file.

d. File Location Strings will be discussed shortly.

E. If no <<Locator>> is coded, <file-name-1> will be attached to a logical device or a file
based upon the specified (or implied) <<Device>>, as follows:

Chapter 5 - ENVIRONMENT DIVISION 31 May 2018

GnuCOBOL 3.0 rcl [03May2018] Programmer’s Guide 103

a. "DISC" or "DISK" will assume an attachment to a file named <file-name-1> in
whatever directory is current at the time the file is opened.

b. "DISPLAY" will assume an attachment to the "STDOUT" logical device; these files
should only be used for output.

c. "KEYBOARD" will assume an attachment to the "STDIN" logical device; these files
should only be used for input.

d. "PRINTER" will assume an attachment to the "LPT1" logical device/port; these
files should only be used for output.

e. "RANDOM" or "TAPE" will behave exactly as "DISC" does. These two additional
<< Device>>s are provided to facilitate the compilation of COBOL source from
other COBOL implementations.

F. The "LINE ADVANCING" device requires that a <<Locator>> be specified; these files
should only be used for output. A COBOL Line Advancing file will allow carriage-
control characters such as line-feeds and form-feeds to be written to the attached oper-
ating system file, via the "ADVANCING" clause of the "WRITE" statement (see [WRITE],
page 379).

G. File Location Strings are used (at runtime) to identify the path and filename to the
data file that must be attached to <file-name-1> when that file is opened.

H. If the compiler "config" file you used to compile the program with had a "filename-
mapping" value of "yes", the GnuCOBOL runtime system will first attempt to identify
a currently-defined environment variable whose value will serve as the data file’s path
and filename, as follows:

a. If the compiler "config" file (see [Compiler Configuration Files], page 589) you
used to compile the program specified "mf" as the "assign-clause" value, then the
File Locator String will be interpreted according to Microfocus COBOL rules —
namely, everything before the last "-" in the File Locator String will be ignored;
the characters after the last "-" will be treated as the base of an environment
variable name. If there is no "-" character in the File Locator String then the
entire File Locator String will serve as the base of an environment variable name.
This is the default behaviour for every config file except "ibm".

b. If, on the other hand, the compiler "config" file you used to compile the program
specified "mf" as the "assign-clause" value, then the File Locator String will be
interpreted according to according to IBM COBOL rules — namely, the File Lo-
cator String is expected to be of the form "S-xxx" or "AS-xxx", in which case the
"xxx" will be treated as the base of an environment variable name. If there is no
"-" character in the File Locator String then the entire File Locator String will
serve as the base of an environment variable name.

c. Once an environment variable name base (let’s refer to it as "bbbb") has been
determined, the runtime system will look for the first one of the following environ-
ment variables that exists, in this sequence:

DD_bbbb
dd_bbbb
bbbb

Windows systems are case-insensitive with regard to environment variables, so

31 May 2018 Chapter 5 - ENVIRONMENT DIVISION

104

L.

GnuCOBOL 3.0 rcl [03May2018] Programmer’s Guide

there is no difference between the first two when using a GnuCOBOL implemen-
tation built for either Windows/MinGW or native Windows.

If an environment variable was found, it’s value will serve as the path and filename
to the data file.

If no environment variable was found, or the "config" file used to compile the program
had a "filename-mapping" value of "no", then the File Locator String value will serve
as the path and filename to the data file.

Paths and file names may be specified on an absolute ("C:\Data\datafile.dat",
"/Data/datafile.dat", o) or relative-to-the-current-directory
("Data\datafile.dat", "Data/datafile.dat", ...) basis.

There may not even be a path ("datafile.dat"), in which case the file must be in the
current directory.

7. The "FILE STATUS" or "SORT STATUS" clause (they are both equivalent and only one or
the other, if any, should be specified) is used to specify the name of a two-digit numeric
data item into which an I/O status code will be saved after every I/O verb that is executed
against the file. This does not actually allocate the data item — you must define the item
yourself somewhere in the data division.

Possible status codes that can be returned to a "FILE STATUS" data item are as follows:

Code Explanation

00
02
05
07
10
14
21
22
23
30
31
34
35
37
38
39
41
42
43
44
46
47
48
49
o1
52
o7

Success

Success (Duplicate Record Key Written)
Success (Optional File Not Found)
Success (No Unit)

End of file reached if reading forward or beginning-of-file reached if reading backward

Out of key range

Key invalid

Attempt to duplicate key value

Key not found

Permanent I/O error

Inconsistent filename

Boundary violation

File not found

Permission denied

Closed with lock

Conflicting attribute

File already open

File not open

Read not done

Record overflow

Read error

"OPEN INPUT" denied (insufficient permissions to read file)
"OPEN OUTPUT" denied (insufficient permissions to write to file)
"OPEN I-0" denied (insufficient permissions to read and/or write file)
Record locked

End of page

"LINAGE" specifications invalid

Chapter 5 - ENVIRONMENT DIVISION 31 May 2018

GnuCOBOL 3.0 rcl [03May2018] Programmer’s Guide 105

61 File sharing failure
91 File not available

8. The "SHARING" clause defines the conditions under which the program will be willing (or
not) to allow other programs executing at the same time to access the file. See [File Sharing],
page 58, for the details.

9. The "LOCK" clause defines how concurrent access to the file will be managed on a record-
by-record basis. See [Record Locking], page 60, for the details.

10. A "SELECT" statement without an "ORGANIZATION" explicitly coded will be handled as if
the following ORGANIZATION clause had been specified:

ORGANIZATION IS SEQUENTIAL
ACCESS MODE IS SEQUENTIAL

31 May 2018 Chapter 5 - ENVIRONMENT DIVISION

106

GnuCOBOL 3.0 rcl [03May2018] Programmer’s Guide

5.2.1.1. ORGANIZATION SEQUENTIAL

{

ORGANIZATION SEQUENTIAL Clause Syntax

[ORGANIZATION|ORGANISATION IS] RECORD BINARY SEQUENTIAL

Files declared as "ORGANIZATION SEQUENTIAL" will consist of records with no explicit end-
of-record delimiter character sequences; records in such files are "delineated" by a calculated
byte-offset (based on the maximum record length) into the file.

1.

The reserved words "BINARY", "IS", "MODE" and "RECORD" are optional and may be in-
cluded, or not, at the discretion of the programmer. The presence or absence of these words
has no effect upon the program.

The reserved words "ORGANIZATION" and "ORGANISATION" are interchangeable.

The phrase "ORGANIZATION IS" (and it’s internationalized alternative, "ORGANISATION
IS") is optional to provide compatibility with those (few) COBOL implementations that
consider "ORGANIZATION" to be optional. Most COBOL implementations do require the
word "ORGANIZATION", so it should be used in new programs.

These files cannot be prepared with any standard text-editing or word processing software as
all such programs will embed delimiter characters at the end of records (use "ORGANIZATION
IS LINE SEQUENTIAL" instead).

These files may contain either "USAGE DISPLAY" or "USAGE COMPUTATIONAL" (of any vari-
ety) data since no binary data sequence can be accidentally interpreted as an end-of-record
delimiter.

While records in a "ORGANIZATION SEQUENTIAL" file may be defined as having variable-
length records, the file will be structured in such a manner as to reserve space for each
record equal to the size of the largest possible record, based on the file’s description in the
"FILE SECTION".

The "ACCESS MODE SEQUENTIAL" clause is optional because, if absent, it will be assumed
anyway for this type of file. The internal structure of these files is such that they can only
be processed in a sequential manner; in order to read the 100th record in such a file, for
example, you first must read records 1 through 99.

Sequential files are processed using the following statements:

e "CLOSE" (see [CLOSE], page 269)

e "COMMIT" (see [COMMIT], page 270)
e "DELETE" (see [DELETE], page 274)
e "MERGE" (see [MERGE], page 313)

e "OPEN" (see [OPEN], page 322)

e "READ" (see [READ], page 330)

Chapter 5 - ENVIRONMENT DIVISION 31 May 2018

GnuCOBOL 3.0 rcl [03May2018] Programmer’s Guide 107

e "REWRITE" (see [REWRITE], page 338)
e "SORT" (see [SORT], page 354)

e "UNLOCK" (see [UNLOCK], page 374)

e "WRITE" (see [WRITE], page 379)

31 May 2018 Chapter 5 - ENVIRONMENT DIVISION

108

GnuCOBOL 3.0 rcl [03May2018] Programmer’s Guide

5.2.1.2. ORGANIZATION LINE SEQUENTIAL

{

ORGANIZATION LINE SEQUENTIAL Clause Syntax

[ORGANIZATION|ORGANISATION IS] LINE SEQUENTIAL

[PADDING CHARACTER IS literal-1 | identifier-1]

The "PADDING CHARACTER" clause is syntactically recognized but is otherwise non-functional.

Files declared as "ORGANIZATION LINE SEQUENTIAL" will consist of records terminated by an
end-of-record delimiter character or character sequence.

1.

10.

11.

The reserved words "CHARACTER", "IS" and "MODE" are optional and may be included, or
not, at the discretion of the programmer. The presence or absence of these words has no
effect upon the program.

The reserved words "ORGANIZATION" and "ORGANISATION" are interchangeable.

The phrase "ORGANIZATION IS" (and it’s internationalized alternative, "ORGANISATION
IS") is optional to provide compatibility with those (few) COBOL implementations that
consider that word to be optional. Most COBOL implementations do require the word
"ORGANIZATION", so it should be used in new programs.

This is the only "ORGANIZATION" valid for files that are assigned to the "PRINTER" device.

These files may be created with any standard text-editing or word processing software
capable of writing text files. Such files should not contain any "USAGE COMPUTATIONAL" or
"BINARY" (of any variety) data since such fields could accidentally contain byte sequences
that could be interpreted as an end-of-record delimiter.

Both fixed- and variable-length record formats are supported.

The end-of-record delimiter sequence will be X’0A’ (an ASCII line-feed character) or a
X’0D0A’ (an ASCII carriage-return + line-feed sequence). The former is used on Unix
implementations of GnuCOBOL (including Windows/MinGW, Windows/Cygwin and OSX
implementations) while the latter would be used with native Windows implementations.

When reading a "LINE SEQUENTIAL" file, records in excess of the size implied by the file’s
description in the "FILE SECTION" will be truncated while records shorter than that size
will be padded to the right with "SPACES".

The "ACCESS MODE SEQUENTIAL" clause is optional because, if absent, it will be assumed
anyway for this type of file. The internal structure of these files is such that the data can
only be processed in a sequential manner; in order to read the 100th record in such a file,
for example, you first must read records 1 through 99.

Files assigned to "PRINTER" or "CONSOLE" should be specified as "ORGANIZATION LINE
SEQUENTIAL".

Line Sequential files are processed using the following statements:

Chapter 5 - ENVIRONMENT DIVISION 31 May 2018

GnuCOBOL 3.0 rcl [03May2018] Programmer’s Guide 109

e "CLOSE" (see [CLOSE], page 269)

e "COMMIT" (see [COMMIT], page 270)

e "DELETE" (see [DELETE], page 274)

e "MERGE" (see [MERGE], page 313)

e "OPEN" (see [OPEN], page 322)

e "READ" (see [READ], page 330)

e "REWRITE" (see [REWRITE], page 338)
e "SORT" (see [SORT], page 354)

e "UNLOCK" (see [UNLOCK], page 374)

e "WRITE" (see [WRITE], page 379)

31 May 2018 Chapter 5 - ENVIRONMENT DIVISION

110

GnuCOBOL 3.0 rcl [03May2018] Programmer’s Guide

5.2.1.3. ORGANIZATION RELATIVE

:

ORGANIZATION RELATIVE Clause Syntax

[ORGANIZATION|ORGANISATION IS] RELATIVE

”””””” { et
{ DYNAMIC }
{ }
{ RANDOM }

These files are files with an internal organization such that records may be processed in a
sequential manner based upon their physical location in the file or in a random manner by
allowing records to be read, written or updated by specifying the relative record number in the

file.

10.

The reserved words "IS", "KEY" and "MODE" are optional and may be included, or not, at
the discretion of the programmer. The presence or absence of these words has no effect
upon the program.

The reserved words "ORGANIZATION" and "ORGANISATION" are interchangeable.

The phrase "ORGANIZATION IS" (and it’s internationalized alternative, "ORGANISATION
IS") is optional to provide compatibility with those (few) COBOL implementations that
consider that word to be optional. Most COBOL implementations do require the word
"ORGANIZATION", so it should be used in new programs.

"ORGANIZATION RELATIVE" files cannot be assigned to the "CONSOLE", "DISPLAY", "LINE
ADVANCING" or "PRINTER" devices.

The "RELATIVE KEY" clause is optional only if "ACCESS MODE SEQUENTIAL" is specified.

While an "ORGANIZATION RELATIVE" file may be defined as having variable-length records,
the file will be structured in such a manner as to reserve space for each record equal to the
size of the largest possible record as defined by the file’s description in the "FILE SECTION".

"ACCESS MODE SEQUENTIAL", the default "ACCESS MODE" if none is specified, indicates that
the records of the file will be processed in a sequential manner, according to their physical
sequence in the file.

"ACCESS MODE RANDOM" means that records will be processed in random sequence by spec-
ifying their record number in the file every time the file is read or written.

"ACCESS MODE DYNAMIC" indicates the program may switch back and forth between
"SEQUENTIAL" and "RANDOM" mode during execution. The file starts out initially in
"SEQUENTIAL" mode when first opened but the program may use the "START" statement
(see [START], page 360) to switch between sequential and random access.

The "RELATIVE KEY" data item is a numeric data item that cannot be defined as a field

Chapter 5 - ENVIRONMENT DIVISION 31 May 2018

GnuCOBOL 3.0 rcl [03May2018] Programmer’s Guide 111

within records of this file. Its purpose is to return the current relative record number of a
relative file that is being processed in "SEQUENTIAL" access mode and to serve as a key that
specifies the relative record number to be read or written when processing a relative file in
"RANDOM" access mode.

11. Relative files are processed using the following statements:

e "CLOSE" (see [CLOSE], page 269)

e "COMMIT" (see [COMMIT], page 270)

e "DELETE" (see [DELETE], page 274)

e "MERGE" (see [MERGE], page 313), "ACCESS MODE RANDOM" not allowed
e "OPEN" (see [OPEN], page 322)

e "READ" (see [READ], page 330)

e "REWRITE" (see REWRITE], page 338)

e "SORT" (see [SORT], page 354), "ACCESS MODE RANDOM" not allowed
e "START" (see [START], page 360)

e "UNLOCK" (see [UNLOCK], page 374)

e "WRITE" (see [WRITE], page 379)

31 May 2018 Chapter 5 - ENVIRONMENT DIVISION

112

GnuCOBOL 3.0 rcl [03May2018] Programmer’s Guide

5.2.1.4. ORGANIZATION INDEXED

:

ORGANIZATION INDEXED Clause Syntax

[ORGANIZATION|ORGANISATION IS] INDEXED

”””””” { e 3
{ DYNAMIC }
S it }
{ RANDOM }
[RECORD KEY IS { [data-name-1]

{ [record-key-name-1]
[=|{SOURCE IS} data-name-2] ...] 1}

[ALTERNATE RECORD KEY IS { [data-name-3]

{ [record-key-name-2]
[=|{SOURCE IS} data-name-4] ... 1 }

Indexed files, like relative files, may have their records processed in either a sequential or random
manner. Unlike relative files, however, the actual location of a record in an indexed file is
calculated automatically based upon the value(s) of one or more alphanumeric fields within
records of the file. For example, an indexed file containing product data might use the product
identification code as a record key. This means you may read, write or update the "A6G4328"th
record or the "Z8X7723"th record directly, based upon the product id value of those records!

1.

The reserved words "IS", "KEY" and "MODE" are optional and may be included, or not, at
the discretion of the programmer. The presence or absence of these words has no effect
upon the program.

The reserved words "ORGANIZATION" and "ORGANISATION" are interchangeable.

The phrase "ORGANIZATION IS" (and it’s internationalized alternative, "ORGANISATION
IS") is optional to provide compatibility with those (few) COBOL implementations that
consider that word to be optional. Most COBOL implementations do require the word
"ORGANIZATION", so it should be used in new programs.

"ORGANIZATION INDEXED" files cannot be assigned to "CONSOLE", "DISPLAY", "KEYBOARD",
"LINE ADVANCING" or "PRINTER".

"ACCESS MODE SEQUENTIAL", the default "ACCESS MODE" if none is specified, indicates that

Chapter 5 - ENVIRONMENT DIVISION 31 May 2018

GnuCOBOL 3.0 rcl [03May2018] Programmer’s Guide 113

10.

11.

12.

the records of the file will be processed in a sequential manner with respect to the values of
the "RECORD KEY" or the "ALTERNATE RECORD KEY" most-recently referenced on a "START"
statement (see [START], page 360).

"ACCESS MODE RANDOM" means that records will be processed in random sequence by ac-
cessing the record with specific record key or alternate record key values.

"ACCESS MODE DYNAMIC" allows the file will be processed either in "RANDOM" or
"SEQUENTIAL" mode; the program may switch between the two modes as needed. The
"START" statement is used to make the switch between modes.

The "RECORD KEY" clause defines the field within the record used to provide the primary
access to records within the file. No two records in the file will be allowed to have the same
"PRIMARY KEY" field value. The "SOURCE IS" clause is for use with "Split Keys".

The "ALTERNATE RECORD KEY" clause, if used, defines an additional field within the record
that provides an alternate means of directly accessing records or an additional field by which
the file’s contents may be processed sequentially. You have the choice of allowing records
to have duplicate alternate key values, if necessary.

There may be multiple "ALTERNATE RECORD KEY" clauses, each defining an additional al-
ternate key for the file.

Usage of the "SUPPRESS WHEN" clause is used when "Sparse Keys" are required which may
take the form for a literal or spaces or zeroes.

Indexed files are processed using the following statements:

e "CLOSE" (see [CLOSE], page 269)

e "COMMIT" (see [COMMIT], page 270)

e "DELETE" (sece [DELETE], page 274)

e "MERGE" (see [MERGE], page 313), "ACCESS MODE RANDOM" not allowed
e "OPEN" (see [OPEN], page 322)

e "READ" (see [READ], page 330)

e "REWRITE" (see [REWRITE], page 338)

e "SORT" (see [SORT], page 354), "ACCESS MODE RANDOM" not allowed
e "START" (see [START], page 360)

e "UNLOCK" (see [UNLOCK], page 374)

e "WRITE" (see [WRITE], page 379)

31 May 2018 Chapter 5 - ENVIRONMENT DIVISION

114 GnuCOBOL 3.0 rcl [03May2018] Programmer’s Guide

5.2.2. SAME RECORD AREA

{ I-0-CONTROL SAME AREA Syntax
SAME { SORT-MERGE } AREA FOR file-name-1...
A S b
{ SORT ¥
{ b
{ RECORD ¥

The "SAME SORT-MERGE" and "SAME SORT" clauses are syntactically recognized but are other-
wise non-functional.

The "SAME RECORD AREA" clause allows you to specify that multiple files should share the same
input and output memory buffers.

1. The reserved words "AREA" and "FOR" are optional and may be included, or not, at the
discretion of the programmer. The presence or absence of these words has no effect upon
the program.

2. This statement must be terminated with a period.

3. While coding only a single file name (the repeated <file-name-1> item) is syntactically valid,
this statement will have no effect upon the program unless at least two files are specified.

4. The effect of this statement will be to cause the specified files to share the same I/O buffer
in memory. These buffers can sometimes get quite large, and by having multiple files
share the same buffer memory you may significantly cut down the amount of memory the
program is using (thus making "room" for more procedural code or data). If you do use
this feature, take care to ensure that no more than one of the specified files are ever OPEN
simultaneously.

Chapter 5 - ENVIRONMENT DIVISION 31 May 2018

GnuCOBOL 3.0 rcl [03May2018] Programmer’s Guide 115

5.2.3. MULTIPLE FILE

{ I-O-CONTROL MULTIPLE FILE Syntax

MULTIPLE FILE TAPE CONTAINS

The "MULTIPLE FILE TAPE" clause is obsolete and is therefore recognized but not functional.

End of Chapter 5 — ENVIRONMENT DIVISION

31 May 2018 Chapter 5 - ENVIRONMENT DIVISION

GnuCOBOL 3.0 rcl [03May2018] Programmer’s Guide 117

6. DATA DIVISION

[DATA DIVISION Syntax }

DATA DIVISION.

{ File/Sort-Description [{ FILE-SECTION-Data-Item } J...
{ { 01-Level-Constant }
{ { 78-Level-Constant ¥
{ 01-Level-Constant
{ 78-Level-Constant
[WORKING-STORAGE SECTION.

S s

[{ WORKING-STORAGE-SECTION-Data-Item } 1... 1]
{ 01-Level-Constant 3
{ 78-Level-Constant }

[LOCAL-STORAGE SECTION.

[{ LOCAL-STORAGE-SECTION-Data-Item } ...]
{ 01-Level-Constant T
{ 78-Level-Constant T

[LINKAGE SECTION.

[{ LINKAGE-SECTION-Data-Item }]1... 1]
{ 01-Level-Constant T
{ 78-Level-Constant T

[REPORT SECTION.

{ Report-Description [{ Report-Group-Definition }]...]
{ { 01-Level-Constant }
{ { 78-Level-Constant }

{ 01-Level-Constant
{ 78-Level-Constant
[SCREEN SECTION.

W o o

[{ SCREEN-SECTION-Data-Item }]... 1]
{ 01-Level-Constant }
{ 78-Level-Constant b

All data used by any COBOL program must be defined in one of the six sections of the data
division, depending upon the purpose of the data.

1. If no data will be described in one of the data division sections, that section header may be
omitted.

2. If no data division sections are needed, the "DATA DIVISION." header itself may be omitted.

3. If more than one section is needed in the data division (a common situation), the sections

31 May 2018 Chapter 6 - DATA DIVISION

118 GnuCOBOL 3.0 rcl [03May2018] Programmer’s Guide

must be coded in the sequence they are presented above.

6.1. Data Definition Principles

GnuCOBOL data items, like those of other COBOL implementations, are described in a hier-
archical manner. This accommodates the fact that data items frequently need to be able to be
broken up into subordinate items. Take for example, the following logical layout of a portion of
a data item named "Employee":

Employee
| I | P additionaldata items ...
Employee-Name Employment-Dates
I |
I | I | I
Last-Name First-Name Middle-Initial From-Date To-Date

1 I
| | | | I |

Year Month Day Year Month Day

The "Employee" data item consists of two subordinate data items — an "Employee-Name" and
an "Employment-Dates" data item (presumably there would be a lot of others too, but we
don’t care about them right now). As the diagram shows, each of those data items are, in
turn, broken down into subordinate data items. This hierarchy of data items can get rather
"deep", and GnuCOBOL, like other COBOL implementations, can handle up to 49 levels of
such hierarchical structures.

As was presented earlier (see [Structured Data], page 13), a data item that is broken down into
other data items is referred to as a group item, while one that isn’t broken down is called an
elementary item.

COBOL uses the concept of a "level number" to indicate the level at which a data item occurs
in a data structure such as the example shown above. When these data items are defined, they
are all defined together with a number in the range 1-49 specified in front of their names. Over
the years, a convention has come to exist among COBOL programmers that level numbers are
always coded as two-digit numbers — they don’t have to be specified as two-digit numbers, but
every example you see in this document will take that approach!

The data item at the top, also referred to as a "record", always has a level number of 01. After
that, you may assign level numbers as you wish (01-02-03-04. . ., 01-05-10-15. . ., etc.), as long
as you follow these simple rules:

1. Every data item at the same "level" of a hierarchy diagram such as the one you see here
(if you were to make one, which you rarely — if ever — will, once you get used to this
concept) must have the same level number.

2. Every new level uses a level number that is strictly greater than the one used in the parent
(next higher) level.

3. When describing data hierarchies, you may never use a level number greater than 49 (except
for 66, 77, 78 and 88 which have very special meanings — see see [Special Data Items],
page 142).

Chapter 6 - DATA DIVISION 31 May 2018

GnuCOBOL 3.0 rcl [03May2018] Programmer’s Guide 119

So, the definition of these data items in a GnuCOBOL program would go something like this:

01 Employee
05 Employee-Name
10 Last-Name
10 First-Name
10 Middle-Initial
05 Employment-Dates
10 From-Date
15 Year
15 Month
15 Day
10 To-Date
15 Year
15 Month
15 Day

The indentation is purely at the discretion of the programmer to make things easier for humans
to read (the compiler couldn’t care less). Historically, COBOL implementations that required
Fixed Format Mode source programs required that the "01" level number begin in Area A and
that everything else begins in Area B. GnuCOBOL only requires that all data definition syntax
occur in columns 8-72. In Free Format Mode, of course, there aren’t even those limitations.

Did you notice that there are two each of "Year", "Month" and "Day" data names defined?
That’s perfectly legal, provided that each can be uniquely "qualified" so as to be distinct
from the other. Take for example the "Year" items. One is defined as part of the "From-Date"
data item while the other is defined as part of the "To-Date" data item. In COBOL, we would
actually code references to these two data items as either "Year OF From-Date" and "Year OF
To-Date" or "Year IN From-Date" and "Year IN To-Date" (COBOL allows either "IN" or
"OF" to be used). Since these references would clarify any confusion to us as to which "Year"
might be referenced, the GnuCOBOL compiler won’t be confused either.

The coding example shown above is incomplete — it only describes the data item names and
their hierarchical relationships to one other. In addition, any valid data item definitions will
also need to describe what type of data is to be contained in a data item (Numeric? Alphanu-
meric? Alphabetic?), how much data can be held in the data item and a multitude of other
characteristics.

When group items are being defined, subordinate items may be assigned a "name" of "FILLER".
There may be any number of "FILLER" items defined within a group item. A data item named
"FILLER" cannot be referenced directly; these items are generally used to specify an unused
portion of the total storage allocated to a group item. Note that it is possible that the name of
the group item itself might be specified as "FILLER" if there is no need to ever refer directly to
the group structure itself.

31 May 2018 Chapter 6 - DATA DIVISION

120 GnuCOBOL 3.0 rcl [03May2018] Programmer’s Guide

6.2. FILE SECTION

[FILE SECTION Syntax

[FILE SECTION.

{ File/Sort-Description [{ FILE-SECTION-Data-Item } 1... }...]
{ { 01-Level-Constant } }
{ { 78-Level-Constant } }
{ 01-Level-Constant }
{ 78-Level-Constant }

Every file that has been referenced by a "SELECT" statement (see [SELECT], page 101) must
also be described in the file section of the data division.

Files destined for use as sort/merge work files must be described with a Sort/Merge File De-
scription ("SD") while every other file is described with a File Description ("FD"). Each of these
descriptions will almost always be followed with at least one record description.

Chapter 6 - DATA DIVISION 31 May 2018

GnuCOBOL 3.0 rcl [03May2018] Programmer’s Guide 121

6.2.1. File/Sort-Description

[File/Sort-Description Syntax

FD|SD file-name-1 [IS EXTERNAL|GLOBAL]

[CODE-SET IS alphabet-name-1]

[DATA { RECORD IS } identifier-1...]

o e }
{ RECORDS ARE }

[LABEL { RECORD IS } OMITTED|STANDARD]

[LINES AT TOP integer-5 | identifier-4]

[WITH FOOTING AT integer-6 | identifier-5]]

[RECORD { CONTAINS [integer-7 TO] integer-8 CHARACTERS]

}
~~~~~~ { - }
{ IS VARYING IN SIZE }
{ = }
{ [ FROM [ integer-7 TO ] integer-8 CHARACTERS }
{ - }
{ }

DEPENDING ON identifier-6 ]

[ { REPORT IS } report-name-1... ]
{ }

The "BLOCK CONTAINS", "DATA RECORD", "LABEL RECORD", "RECORDING MODE" and "VALUE
OF" clauses are syntactically recognized but are obsolete and non-functional. These clauses
should not be coded in new programs.

1. The reserved words "ARE", "AT", "CHARACTERS" ("RECORD" clause only), "CONTAINS",
"FROM", "IN", "IS", "ON" and "WITH" are optional and may be included, or not, at the

31 May 2018 Chapter 6 - DATA DIVISION



122

10.

11.

12.

GnuCOBOL 3.0 rcl [03May2018] Programmer’s Guide

discretion of the programmer. The presence or absence of these words has no effect upon
the program.

The terms "RECORD IS" and "RECORDS ARE" are interchangeable.
The terms "REPORT IS" and "REPORTS ARE" are interchangeable.

Only files intended for use as work files for either the "SORT" (see [SORT], page 354) or
"MERGE" (see [MERGE], page 313) statements should be coded with an SD — all others
should be defined with a FD.

The sequence in which files are defined via "FD" or "SD", as compared to the sequence in
which their "SELECT" statements were coded, is irrelevant.

The name specified as <file-name-1> must exactly match the name specified on the file’s
"SELECT" statement.

The "CODE-SET" clause allows a custom alphabet, defined in the "SPECIAL-NAMES" (see
[SPECTIAL-NAMES], page 90) paragraph, to be associated with a file. This clause is valid
only when used with sequential or line sequential files.

The "LINAGE" clause may only be specified in the "FD" of a sequential or line sequential
file. If used with a sequential file, the organization of that file will be implicitly changed to
line sequential. The various components of the "LINAGE" clause define the layout of printed
pages as follows:

e "LINES AT TOP" — the number of unused (i.e. left blank) lines at the top of every
page. The default if this if not specified is zero.

e "LINES AT BOTTOM" — the number of unused (i.e. left blank) lines at the bottom of
every page. The default if this if not specified is zero.

e "LINAGE IS n LINES" — the total number of used/usable lines on the page.

e The sum of the previous three specifications should be the total number of possible
lines available on one printed page.

e "FOOTING AT" — the line number beyond which nothing may be printed except for
any footing that is to appear on every page. The default for this if not specified is zero,
meaning there will be no footings. This value cannot be larger than the "LINAGE IS
n LINES" value.

This page structure — once defined — can be automatically enforced by the "WRITE"
statement (see [WRITE], page 379).

Specifying a "LINAGE" clause in an "FD" will cause the "LINAGE-COUNTER" special register
to be created for the file. This automatically-created data item will always contain the
current relative line number on the page being prepared which will serve as the starting
point for a "WRITE" statement.

The "RECORD CONTAINS" and "RECORD IS VARYING" clauses are ignored (with a warning
message issued) when used with line sequential files. With other file organizations, these
mutually-exclusive clauses define the length of data records within the file. The data item
specified as <identifier-6> must be defined within one of the record descriptions of <file-
name-1>.

The "REPORT IS" clause announces to the compiler that the file will be dedicated to the
Report Writer Control System (RWCS); the clause names one or more reports, each to be

Chapter 6 - DATA DIVISION 31 May 2018



GnuCOBOL 3.0 rcl [03May2018] Programmer’s Guide 123

described in the report section. The following special rules apply when the "REPORT" clause
is used:

A.

The clause may only be specified in the "FD" of a sequential or line sequential file. If
used with a sequential file, the organization of that file will be implicitly changed to
line sequential.

The "FD" cannot be followed by record descriptions — detailed descriptions of data
to be printed to the file will be defined in the "REPORT SECTION" (see [REPORT
SECTION], page 132).

If a "LINAGE" clause is also specified, Values specified for "LINAGE IS" and "FOOTING
AT" will be ignored. The values of "LINES AT BOTTOM" and "LINES AT TOP", if any,
will be honoured.

13. The following special rules apply only to sort/merge work files:

A.

B.

E.

Sort/merge work files should be assigned to "DISK" (or "DISC") on their "SELECT"
statements.

Sorts and merges will be performed in memory, if the amount of data being sorted
allows.

Should actual disk work files be necessary due to the amount of data being sorted or
merged, they will be automatically allocated to disk in a folder defined by:

e The "TMPDIR" run-time environment variable (see [Run Time Environment Vari-
ables]|, page 596)

e The "TMP" run-time environment variable

e The "TEMP" run-time environment variable

(in that order)

These disk files will be automatically purged upon "SORT" or "MERGE" termination.
They will also be purged if the program terminates abnormally before the "SORT" or
"MERGE" finishes. Should you ever need to know, temporary sort/merge work files will
be named "cob*.tmp".

If you specify a specific filename in the sort/merge work file’s "SELECT", it will be
ignored.

14. See [Data Description Clauses|, page 149, for information on the "EXTERNAL" and "GLOBAL"
options.

31 May 2018 Chapter 6 - DATA DIVISION



124 GnuCOBOL 3.0 rcl [03May2018] Programmer’s Guide

6.2.2. FILE-SECTION-Data-Item

{ FILE-SECTION-Data-Item Syntax

level-number [ identifier-1 | FILLER ] [ IS GLOBAL|EXTERNAL ]

[ BLANK WHEN ZERO ]

[ JUSTIFIED RIGHT ]

[ OCCURS [ integer-1 TO ] integer-2 TIMES

[ DEPENDING ON identifier-2 ]

[ PICTURE IS picture-string ]

[ REDEFINES identifier-5 ]

[ SYNCRONIZED|SYNCHRONISED [ LEFT|RIGHT ] 1

[ USAGE IS data-item-usage ] . [ FILE-SECTION-Data-Item ]...

The "LEFT" and "RIGHT" (SYNCRONIZED) clauses are syntactically recognized but are other-
wise non-functional.

Every sort file description ("SD" or "FD") must be followed by at least one 0l-level data item,
except for file descriptions containing the "REPORT IS" clause. These 0l-level data items, in
turn, may be broken down into subordinate group and elementary items. An 0l-level data item
defined here in the file section is also known as a 'Record’, even if it is an elementary item,
provided that elementary item lacks the "CONSTANT" attribute.

1. The reserved words "BY", "IS" "KEY", "ON" and "WHEN" are optional and may be included,
or not, at the discretion of the programmer. The presence or absence of these words has no
effect upon the program.

2. The reserved words "SYNCRONIZED" and "SYNCRONIZED" are interchangeable. Both may be
abbreviated to "SYNC".

3. The reserved word "PICTURE" may be abbreviated to "PIC".

4. As the syntax diagram shows, the definition of a <<FILE-SECTION-Data-Item>> is a re-
cursive one in that there may be any number of such specifications coded following a FD or
SD. The first such specification must have a level number of 01, and will describe a specific
format of data record within the file. Specifications that follow that one may have level

Chapter 6 - DATA DIVISION 31 May 2018



GnuCOBOL 3.0 rcl [03May2018] Programmer’s Guide 125

numbers greater than 01, in which case they are defining a hierarchical breakdown of the
record. The definition of a record is terminated when one of the following occurs:

e Another 0l-level item is found — this signifies the start of another record layout for
the file.

e Another "FD" or "SD" is found — this marks the completion of the detailed description
of the file and begins another.

e A division or section header is found — this also marks the completion of the detailed
description of the file and signifies the end of the file section as well.

5. Every <<FILE-SECTION-Data-Item>> description must be terminated with a period.

6. If there are multiple record descriptions present for a given "FD" or "SD", the one with
the longest length will define the size of the record buffer into which a "READ" statement
(see [READ], page 330) or a "RETURN" statement (see [RETURN], page 337) will deliver
data read from the file and from which a "WRITE" statement (see [WRITE], page 379)
or "RELEASE" statement (see [RELEASE], page 335) statement will obtain the data to be
written to the file.

7. The various 01-level record descriptions for a file description implicitly share that one com-
mon record buffer (thus, they provide different ways to view the structure of data that can
exist within the file). Record buffers can be shared between files by using the "SAME RECORD
AREA" (see [SAME RECORD AREA], page 114) clause.

8. The only valid level numbers are 01-49, 66, 77, 78 and 88. Level numbers 66, 77, 78 and 88
all have special uses — See [Special Data Items], page 142, for details.

9. Not specifying an <identifier-1> or "FILLER" immediately after the level number has the
same effect as if "FILLER" were specified. A data item named "FILLER" cannot be referenced
directly; these items are generally used to specify an unused portion of the total storage
allocated to a group item or to describe a group item whose contents which will only be
referenced using the names of those items that belong to it.

10. "EXTERNAL" cannot be combined with "GLOBAL" or "REDEFINES".

11. File section data buffers (and therefore all 01-level record layouts defined in the file section)
are initialized to all binary zeros when the program is loaded into storage.

12. See [Data Description Clauses|, page 149, for information on the usage of the various data
description clauses.

31 May 2018 Chapter 6 - DATA DIVISION



126 GnuCOBOL 3.0 rcl [03May2018] Programmer’s Guide

6.3. WORKING-STORAGE SECTION

{ WORKING-STORAGE-SECTION-Data-Item Syntax

level-number [ identifier-1 | FILLER ] [ IS GLOBAL | EXTERNAL ]

[ BASED ]

[ BLANK WHEN ZERO ]

[ JUSTIFIED RIGHT ]

[ PICTURE IS picture-string ]

[ REDEFINES identifier-5 ]

[ SYNCRONIZED|SYNCHRONISED [ LEFT|RIGHT ] 1]

[ USAGE IS data-item-usage ]

[ VALUE IS [ ALL ] literal-1 ] . [ WORKING-STORAGE-SECTION-Data-Item ]...

The "LEFT" and "RIGHT" (SYNCRONIZED) clauses are syntactically recognized but are other-
wise non-functional.

The working-storage section is used to describe data items that are not part of files, screens or
reports and whose data values persist throughout the execution of the program.

1. The reserved words "BY", "CHARACTER", "IS", "KEY", "ON", "RIGHT" (JUSTIFIED),
"TIMES" and "WHEN" are optional and may be included, or not, at the discretion of the
programmer. The presence or absence of these words has no effect upon the program.

2. The reserved words "SYNCRONIZED" and "SYNCHRONISED" are interchangeable. Both may
be abbreviated as "SYNC".

3. The reserved word "PICTURE" may be abbreviated to "PIC".
4. The reserved word "JUSTIFIED" may be abbreviated to "JUST".
5. As the syntax diagram shows, the definition of a << WORKING-STORAGE-SECTION-

Chapter 6 - DATA DIVISION 31 May 2018



GnuCOBOL 3.0 rcl [03May2018] Programmer’s Guide 127

10.

11.

Data-Item>> is a recursive one in that there may be any number of such specifications
coded following one another. The first such specification must have a level number of
01. Specifications that follow that one may have level numbers greater than 01, in which
case they are defining a hierarchical breakdown of a record. The definition of a record is
terminated when one of the following occurs:

e Another Ol-level item is found — this signifies the end of the definition of one record
and the start of a another.

e A 77-level item is found — this signifies the end of the definition of the record and
begins the definition of a special data item; See [77-Level Data Items], page 146, for
more information.

e A division or section header is found — this also marks the completion of a record and
signifies the end of the working-storage section as well.

Every << WORKING-STORAGE-SECTION-Data-Item>> description must be terminated
with a period.

The only valid level numbers are 01-49, 66, 77, 78 and 88. Level numbers 01 through 49
are used to define data items that may be part of a hierarchical structure. Level number
01 can also be used to define a constant — an item with an unchangeable value specified
at compilation time.

Level numbers 66, 77, 78 and 88 all have special uses — See [Special Data Items], page 142,
for details.

Not specifying an <identifier-1> or "FILLER" immediately after the level number has the
same effect as if "FILLER" were specified. A data item named "FILLER" cannot be referenced
directly; these items are generally used to specify an unused portion of the total storage
allocated to a group item or to describe a group item whose contents which will only be
referenced using the names of those items that belong to it.

Data items defined within the working-storage section are automatically initialized once
— as the program in which the data is defined is loaded into memory. Subprograms
may be loaded into memory more than once (see the "CANCEL" statement (see [CANCEL],
page 268)), in which case initialization will happen each time they are loaded. See [Data
Initialization], page 24, for a discussion of the initialization rules.

See [Data Description Clauses], page 149, for information on the usage of the various data
description clauses.

31 May 2018 Chapter 6 - DATA DIVISION



128 GnuCOBOL 3.0 rcl [03May2018] Programmer’s Guide

6.4. LOCAL-STORAGE SECTION

[ LOCAL-STORAGE-SECTION-Data-Item Syntax

level-number [ identifier-1 | FILLER ] [ IS GLOBAL|EXTERNAL ]

[ BASED ]

[ BLANK WHEN ZERO ]

[ JUSTIFIED RIGHT ]

[ PICTURE IS picture-string ]

[ REDEFINES identifier-5 ]

[ SYNCRONIZED|SYNCHRONISED [ LEFT|RIGHT ] 1

[ USAGE IS data-item-usage ]

[ VALUE IS [ ALL ] literal-1 ] . [ LOCAL-STORAGE-SECTION-Data-Item ]...

The "LEFT" and "RIGHT" (SYNCRONIZED) clauses are syntactically recognized but are other-
wise non-functional.

The local-storage section is similar to working-storage, but describes data within a subprogram
that will be dynamically allocated and initialized (automatically) each time the subprogram is
executed. See [Data Initialization|, page 24, for the rules of data initialization.

1. The reserved words "BY", "CHARACTER" "IS", "KEY", "ON", "RIGHT" (JUSTIFIED),
"TIMES" and "WHEN" are optional and may be included, or not, at the discretion of the
programmer. The presence or absence of these words has no effect upon the program.

2. The reserved words "SYNCRONIZED" and "SYNCHRONISED" are interchangeable. Both may
be abbreviated as "SYNC".

3. The reserved word "PICTURE" may be abbreviated to "PIC".
4. The reserved word "JUSTIFIED" may be abbreviated to "JUST".

Chapter 6 - DATA DIVISION 31 May 2018



GnuCOBOL 3.0 rcl [03May2018] Programmer’s Guide 129

10.
11.

As the syntax diagram shows, the definition of a <<LOCAL-STORAGE-SECTION-Data-
Item>> is a recursive one in that there may be any number of such specifications coded
following one another. The first such specification must have a level number of 01. Speci-
fications that follow that one may have level numbers greater than 01, in which case they
are defining a hierarchical breakdown of a record. The definition of a record is terminated
when one of the following occurs:

e Another Ol-level item is found — this signifies the end of the definition of one record
and the start of a another.

e A division or section header is found — this also marks the completion of a record and
signifies the end of the local-storage section as well.

Every <<LOCAL-STORAGE-SECTION-Data-Item>> description must be terminated with
a period.

The only valid level numbers are 01-49, 66, 77, 78 and 88. Level numbers 01 through 49
are used to define data items that may be part of a hierarchical structure. Level number
01 can also be used to define a constant — an item with an unchangeable value specified
at compilation time.

Level numbers 66, 77, 78 and 88 all have special uses — See [Special Data Items], page 142,
for details.

Not specifying an <identifier-1> or "FILLER" immediately after the level number has the
same effect as if "FILLER" were specified. A data item named "FILLER" cannot be referenced
directly; these items are generally used to specify an unused portion of the total storage
allocated to a group item or to describe a group item whose contents which will only be
referenced using the names of those items that belong to it.

Local-storage cannot be used in nested subprograms.

See [Data Description Clauses], page 149, for information on the usage of the various data
description clauses.

31 May 2018 Chapter 6 - DATA DIVISION



130

GnuCOBOL 3.0 rcl [03May2018] Programmer’s Guide

6.5. LINKAGE SECTION

[

LINKAGE-SECTION-Data-Item Syntax

level-number [ identifier-1 | FILLER ] [ IS GLOBAL|EXTERNAL ]

C

[

ANY LENGTH ]

BLANK WHEN ZERO ]

JUSTIFIED RIGHT ]

PICTURE IS picture-string ]

REDEFINES identifier-6 ]

SYNCRONIZED|SYNCHRONISED [ LEFT|RIGHT ] ]

USAGE IS data-item-usage ] . [ LINKAGE-SECTION-Data-Item ]...

The "LEFT" and "RIGHT" (SYNCRONIZED) clauses are syntactically recognized but are other-
wise non-functional.

The linkage section describes data within a subprogram that serves as either input arguments
to or output results from the subprogram.

1.

The reserved words "BY", "CHARACTER", "IS", "KEY", "ON" and "WHEN" are optional and
may be included, or not, at the discretion of the programmer. The presence or absence of

these words has no effect upon the program.

The reserved words "SYNCRONIZED" and ""SYNCHRONISED"" are interchangeable. Both may

be abbreviated as "SYNC".
The reserved word "PICTURE" may be abbreviated to "PIC".
The reserved word "JUSTIFIED" may be abbreviated to "JUST".

As the syntax diagram shows, the definition of a <<LINKAGE-SECTION-Data-Item>> is

Chapter 6 - DATA DIVISION

31 May 2018



GnuCOBOL 3.0 rcl [03May2018] Programmer’s Guide 131

a recursive one in that there may be any number of such specifications coded following one
another. The first such specification must have a level number of 01. Specifications that
follow that one may have level numbers greater than 01, in which case they are defining a
hierarchical breakdown of a record. The definition of a record is terminated when one of
the following occurs:

e Another Ol-level item is found — this signifies the end of the definition of one record
and the start of a another.

e A division or section header is found — this also marks the completion of a record and
signifies the end of the linkage section as well.

6. Every <<LINKAGE-SECTION-Data-Item>> description must be terminated with a period.

7. The only valid level numbers are 01-49, 66, 77, 78 and 88. Level numbers 01 through 49
are used to define data items that may be part of a hierarchical structure. Level number
01 can also be used to define a constant — an item with an unchangeable value specified
at compilation time.

8. Level numbers 66, 77, 78 and 88 all have special uses — See [Special Data Items], page 142,
for details.

9. It is expected that:

A. A linkage section should occur only within a subprogram. The compiler will not prevent
its use in a main program, however.

B. All 01-level data items described within a subprogram’s linkage section should appear in
a "PROCEDURE DIVISION USING" (see [PROCEDURE DIVISION USING], page 224)
or as arguments on an "ENTRY" statement.

C. Each 01-level data item described within a subprogram’s linkage section should cor-
respond to an argument passed on a "CALL" statement (see [CALL], page 264) or an
argument on a function call to the subprogram.

10. Not specifying an <identifier-1> or "FILLER" immediately after the level number has the
same effect as if "FILLER" were specified. A data item named "FILLER" cannot be referenced
directly; these items are generally used to specify an unused portion of the total storage
allocated to a group item or to describe a group item whose contents which will only be
referenced using the names of those items that belong to it. In the linkage section, 01-level
data items cannot be named "FILLER".

11. No storage is allocated for data defined in the linkage section; the data descriptions there are
merely defining storage areas that will be passed to the subprogram by a calling program.
Therefore, any discussion of the default initialization of such data is irrelevant. It is possible,
however, to manually allocate linkage section data items that aren’t subprogram arguments
via the "ALLOCATE" statement (see [ALLOCATE]|, page 261) statement. In such cases,
initialization will take place as per the documentation of that statement.

12. See [Data Description Clauses], page 149, for information on the usage of the various data
description clauses.

31 May 2018 Chapter 6 - DATA DIVISION



132 GnuCOBOL 3.0 rcl [03May2018] Programmer’s Guide

6.6. REPORT SECTION

{ REPORT SECTION Syntax

[ REPORT SECTION.

{ Report-Description [ { Report-Group-Definition } ]... }... ]
{ { 01-Level-Constant } }
{ { 78-Level-Constant } ¥
{ 01-Level-Constant }
{ 78-Level-Constant }

[ Report-Description (RD) Syntax

RD report-name [ IS GLOBAL ]

[ CODE IS literal-1 | identifier-1 ]

[ { CONTROL IS } { FINAL Fo.o.oo0 ]
{ ) S }
{ CONTROLS ARE } { identifier-2 }

[ PAGE [ { LIMIT IS } ] [ { literal-2 } LINES ]
R B } { identifier-3 } ~~~~

[ literal-3 | identifier-4 COLUMNS|COLS ]

[ HEADING IS literal-4 | identifier-5 ]

[ FIRST DE|DETAIL IS literal-5 | identifier-6 ]

[ LAST CH|{CONTROL HEADING} IS literal-6 | identifier-7 1]

[ FOOTING IS literal-8 | identifier-9 ] ]

This section describes the layout of printed reports as well as many of the functional aspects of the
generation of reports that will be produced via the Report Writer Control System. It is important
to maintain the order of these clauses and ensure that all fields defined or referenced with this
section are actually defined in the WORKING-STORAGE SECTION and not elsewhere.

1. The reserved words "ARE" and "IS" are optional and may be included, or not, at the
discretion of the programmer. The presence or absence of these words has no effect upon
the program.

Chapter 6 - DATA DIVISION 31 May 2018



GnuCOBOL 3.0 rcl [03May2018] Programmer’s Guide 133

2. The phrases "CONTROL IS" and "CONTROLS ARE" are interchangeable, as are the "PAGE
LIMIT" and "PAGE LIMITS" phrases.

3. The reserved word "LINES" may be abbreviated as "LINE".

4. The reserved word "COLUMNS" may be abbreviated as "COLS".

5. Each report referenced on a "REPORT IS" clause (see [File/Sort-Description], page 121)
must be described with a report description ("RD").

6. See [GLOBALJ, page 170, for information on the "GLOBAL" option.

7. Please see [Report Writer Features|, page 23, if you have not read it already. This will
familiarize you with the Report Writer terminology that will follow.

8. The following rules pertain to the "PAGE LIMITS" clause:

A.

B.

If no "PAGE LIMITS" clause is specified, the entire report will be generated as if it
consists of a single arbitrarily long page.

All literals (<literal-2> through <literal-8>) must be numeric with non-zero positive
integer values.

All identifiers (<identifier-2> through <identifier-8>) must be numeric, unedited with
non-zero positive integer values.

Any value specified for <literal-2>|<identifier-2> will define the total number of avail-
able lines on any report page, not counting any unused margins at the top and/or
bottom of the page (defined by the "LINES AT TOP" and "LINES AT BOTTOM" values
specified on the "LINAGE" clause of the "FD" this "RD" is linked to — see [File/Sort-
Description|, page 121).

E. Any value specified for <literal-3> | <identifier-3> will be ignored.

The "HEADING" clause defines the first line number at which a report heading or page
heading may be presented.

The "FIRST DETAIL" clause defines the first line at which a detail group may be pre-
sented.

The "LAST CONTROL" HEADING clause defines the last line at which any line of a
control heading may be presented.

The "LAST DETAIL" clause defines the last line at which any line of a detail group may
be presented.

The "FOOTING" clause defines the last line at which any line of a control footing group
may be presented.

The following rules establish default values for the various "PAGE LIMIT" clauses, as-
suming there is one:

e "HEADING" — the default is one (1)
e "FIRST DETAIL" — the HEADING value is used

e "LAST CONTROL HEADING" — the value from "LAST DETAIL" or, if that is absent,
the value from "FOOTING" or, if that too is absent, the value from "PAGE LIMIT"

e "LAST DETAIL" — the value from "FOOTING" or, if that is absent, the value from
"PAGE LIMIT"

31 May 2018 Chapter 6 - DATA DIVISION



134

L.

GnuCOBOL 3.0 rcl [03May2018] Programmer’s Guide

e "FOOTING" — the value from "LAST DETAIL" or, if that is absent, the value from
"PAGE LIMIT"

For the values specified on a "PAGE LIMIT" clause to be valid, all of the following must
be true:

e "HEADING" not > "FIRST DETAIL"

e "FIRST DETAIL" not > "LAST CONTROL HEADING"
e "LAST CONTROL HEADING" not > "LAST DETAIL"
e "LAST DETAIL" not > "FOOTING"

9. The following rules pertain to the "CONTROL" clause:

A.

If there is no "CONTROL" clause, the report will contain no control breaks; this implies
that there can be no "CONTROL HEADING" or "CONTROL FOOTING" report groups defined
for this "RD".

Include the reserved word "FINAL" if you want to include a special control heading
before the first detail line is generated ("CONTROL HEADING FINAL") or after the last
detail line is generated ("CONTROL FOOTING FINAL").

If you specify "FINAL", it must be the first control break named in the "RD".

Any <identifier-9> specifications included on the "CONTROL" clause are referencing data
names defined in any data division section except for the report section.

There must be a "CONTROL HEADING" and/or "CONTROL FOOTING" report group defined
in the report section for each <identifier-9>.

At execution time:

e Each time a "GENERATE" statement (see [GENERATE], page 296) is executed
against a detail report group defined for this "RD", the RWCS will check the
contents of each <identifier-2> data item; whenever an <identifier-9>’s value has
changed since the previous GENERATE, a control break condition will be in effect
for that <identifier-2>.

e Once the list of control breaks has been determined, the "CONTROL FOOTING" for
each <identifier-2> having a control break (if any such report group is defined)
will be presented.

e Next, the "CONTROL HEADING" for each <identifier-2> having a control break (if
any such report group is defined) will be presented.

e The "CONTROL FOOTING" and "CONTROL HEADING" report groups will be presented
in the sequence in which they are listed on the "CONTROL" clause.

e Only after this processing has occurred will the detail report group specified on
the "GENERATE" be presented.

10. Each "RD" will have the following allocated for it:

A.

The "PAGE-COUNTER" special register (see [Special Registers|, page 240), which will
contain the current report page number.

e This register will be set to a value of 1 when an "INITIATE" statement (see
[INITIATE], page 307) is executed for the report and will be incremented by 1
each time the RWCS starts a new page of the report.

Chapter 6 - DATA DIVISION 31 May 2018



GnuCOBOL 3.0 rcl [03May2018] Programmer’s Guide 135

e References to "PAGE-COUNTER" within the report section will be implicitly qualified
with the name of the report to which the report group referencing the register
belongs.

e References to "PAGE-COUNTER" in the procedure division must be qualified with
the appropriate report name if there are multiple "RD"s defined.

B. The "LINE-COUNTER" special register , which will contain the current line number on
the current page.

11. The "RD" must be followed by at least one 01-level report group definition.

31 May 2018 Chapter 6 - DATA DIVISION



136

GnuCOBOL 3.0 rcl [03May2018] Programmer’s Guide

6.6.1. Report Group Definitions

{

Report-Group-Definition Syntax

01

[

[ identifier-1 1]

LINE NUMBER IS { integer-1 [ [ ON NEXT PAGE ] } ]

T S S }
{ +IPLUS integer-1 }
{ - }
{ ON NEXT PAGE }

NEXT GROUP IS { [ +|PLUS ] integer-2 1} ]

””””””””” { T +
{ NEXT|{NEXT PAGE}|PAGE }

| —

B e T S W= S S S,

B
o
=
<
[z
—
=
H
=
s A el s e el AL R SRR VT RS

{ RF|{REPORT FOOTING}

[ REPORT-SECTION-Data-Item ]...

The syntax shown here documents how a report group is defined to a report. This syntax is
valid only in the report section, and only then after an "RD".

A T

The reserved words "IS", "NUMBER" and "ON" are optional and may be included, or not,
at the discretion of the programmer. The presence or absence of these words has no effect
upon the program.

The "RH" and "REPORT HEADING" terms are interchangeable, as are "PH" and "PAGE
HEADING", "CH" and "CONTROL HEADING", "DE" and "DETAIL", "CF" and "CONTROL
FOOTING", "PF" and "PAGE FOOTING" as well as "RF" and "REPORT FOOTING".

The report group being defined will be a part of the most-recently coded "RD".
The "TYPE" (see [TYPE], page 208) clause specifies the type of report group being defined.
The level number used for a report group definition must be 01.

The optional <identifier-1> specification assigns a name to this report group so that

Chapter 6 - DATA DIVISION 31 May 2018



GnuCOBOL 3.0 rcl [03May2018] Programmer’s Guide 137

the group may be referenced either by a GENERATE statement or on a "USE BEFORE
REPORTING".

7. No two report groups in the same report ("RD") may named with the same <identifier-1>.
There may, however, be multiple <identifier-1> definitions in different reports. In such
instances, references to <identifier-1> must be qualified by the report name.

8. There may only be one report heading, report footing, final control heading, final control
footing, page heading and page footing defined per report.

9. Report group declarations must be followed by at least one <<REPORT-SECTION-Data-
Item>> with a level number in the range 02-49.

10. See [Data Description Clauses|, page 149, for information on the usage of the various data
description clauses.

31 May 2018 Chapter 6 - DATA DIVISION



138 GnuCOBOL 3.0 rcl [03May2018] Programmer’s Guide

6.6.2. REPORT SECTION Data Items

{ REPORT-SECTION-Data-Item Syntax

level-number [ identifier-1 ]

[ BLANK WHEN ZERO ]
[ COLUMN [ { NUMBER IS } ] [ +|PLUS ] integer-1 ]
——m PR } S
{ NUMBERS ARE }

[ JUSTIFIED RIGHT ]
[ LINE NUMBER IS { integer-2 [ [ ON NEXT PAGE ] }
T { +|PLUS integer-2 =~~~ "7~ }
{ = }
{ ON NEXT PAGE }

[ OCCURS [ integer-3 TO ] integer-4 TIMES

[ DEPENDING ON identifier-2 ]

[ STEP integer-5 1]
[ VARYING identifier-3 FROM { identifier-4 } BY { identifier-5 } ]
””””””” ~~~~ { integer-6 } 77 { integer-7 }
[ PICTURE IS picture-string ]

[ PRESENT WHEN condition-name ]

[ { SOURCE IS literal-1|identifier-6 [ ROUNDED ] } 1
{~~v- T }
{ SUM OF { identifier-7 }... [ { RESET ON FINAL|identifier-8 } ] }
{ { literal-2 } { = o o}

}

{ VALUE IS [ ALL ] literal-3 { UPON identifier-9 }

[ REPORT-SECTION-Data-Item ]...

Data item descriptions describing the report lines and fields that make up the substance of a
report group immediately follow the definition of that group.

1. The reserved words "IS", "NUMBER", "OF", "ON", "RIGHT", "TIMES" and "WHEN" (BLANK)
are optional and may be included, or not, at the discretion of the programmer. The presence
or absence of these words has no effect upon the program.

Chapter 6 - DATA DIVISION 31 May 2018



GnuCOBOL 3.0 rcl [03May2018] Programmer’s Guide 139

The reserved word "COLUMN" may be abbreviated as "COL".
The reserved word "JUSTIFIED" may be abbreviated as "JUST".
The reserved word "PICTURE" may be abbreviated as "PIC".

The "SOURCE" (see [SOURCE], page 202), "SUM" (see [SUM], page 472) and "VALUE" (see
[VALUE], page 220) clauses, valid only on an elementary item, are mutually-exclusive of
each other.

AN B

6. Group items (those without "PICTURE" clauses) are frequently used to describe entire lines
of a report, while elementary items (those with a picture clause) are frequently used to
describe specific fields of information on the report. When this coding convention is being
used, group items will have "LINE" (see [LINE], page 177) clauses and no "COLUMN" (see
[COLUMN], page 160) clauses while elementary items will be specified the other way around.

7. See [Data Description Clauses|, page 149, for information on the usage of the various data
description clauses.

31 May 2018 Chapter 6 - DATA DIVISION



140 GnuCOBOL 3.0 rcl [03May2018] Programmer’s Guide

6.7. SCREEN SECTION

{ SCREEN-SECTION-Data-Item Syntax

level-number [ identifier-1 | FILLER ]

[ AUTO | AUTO-SKIP | AUTOTERMINATE ] [ BELL | BEEP ]

[ BACKGROUND-COLOR |BACKGROUND-COLOUR IS integer-1 | identifier-2 ]

[ BLANK WHEN ZERO ] [ JUSTIFIED RIGHT ]

[ BLINK ] [ HIGHLIGHT | LOWLIGHT ] [ REVERSE-VIDEO ]

[ COLUMN NUMBER IS [ +|PLUS ] integer-2 | identifier-3 ]

[ FOREGROUND-COLOR |FOREGROUND-COLOUR IS integer-3 | identifier-4 ]
[ { FROM literal-1 | identifier-5 } 1]

{ }

{ TO identifier-5

{ -

{ USING identifier-5

R R =

[ LINE NUMBER IS [ +|PLUS ] integer-4 | identifier-6 ]

[ OCCURS integer-5 TIMES ]

[ PICTURE IS picture-string ]

[ PROMPT [ CHARACTER IS literal-2 | identifier-7 1]

[ SCREEN-SECTION-Data-Item ]...

The screen section describes the screens to be displayed during terminal/console I-O.

1. The reserved words "CHARACTER" ("SEPARATE" Clause), "IS", "NUMBER", "RIGHT", "TIMES"
and "WHEN" are optional and may be included, or not, at the discretion of the programmer.
The presence or absence of these words has no effect upon the program.

Chapter 6 - DATA DIVISION 31 May 2018



GnuCOBOL 3.0 rcl [03May2018] Programmer’s Guide 141

2. The reserved word "COLUMN" may be abbreviated as "COL".
3. The reserved word "PICTURE" may be abbreviated as "PIC".

4. The following sets of reserved words are interchangeable:

e "AUTO", "AUTO-SKIP" and "AUTOTERMINATE"

e "BACKGROUND-COLOR" and "BACKGROUND-COLOUR"
e "BELL" and "BEEP"

e "FOREGROUND-COLOR" and "FOREGROUND-COLOUR"
e "FULL" and "LENGTH-CHECK"

e "REQUIRED" and "EMPTY-CHECK"

e "SECURE" and "NO-ECHQO"

5. Data items defined in the screen section describe input, output or combination screen layouts
to be used with "ACCEPT screen-data-item" statement (see [ACCEPT screen-data-item],
page 246) or "DISPLAY screen-data-item" statement (see [DISPLAY screen-data-item],
page 279) statements. These screen layouts may define the entire available screen area or
any subset of it.

6. The term ’available screen area’ is a nebulous one in those environments where command-
line shell sessions are invoked within a graphical user-interface environment, as will be
the case on Windows, OSX and most Unix/Linux systems — these environments allow
command-line session windows to exist with a variable number of available screen rows and
columns. When you are designing GnuCOBOL screens, you need to do so with an awareness
of the logical screen row/column geometry the program will be executing within.

7. Data items with level numbers 01 (Constants), 66, 78 and 88 may be used in the screen
section; they have the same syntax, rules and usage as they do in the other data division
sections.

8. Without "LINE" (see [LINE], page 177) or "COLUMN" (see [COLUMN], page 160) clauses,
screen section fields will display on the console window beginning at whatever line/column
coordinate is stated or implied by the "ACCEPT screen-data-item" or "DISPLAY
screen-data-item" statement that presents the screen item. After a field is presented to
the console window, the next field will be presented immediately following that field.

9. A "LINE" clause explicitly stated in the definition of a screen section data item will
override any "LINE" clause included on the "ACCEPT screen-data-item" or "DISPLAY
screen—-data-item" statement that presents that data item to the screen. The same is
true of "COLUMN" clauses.

10. The Tab and Back-Tab (Shift-Tab on most keyboards) keys will position the cursor from
field to field in the line/column sequence in which the fields occur on the screen at execution
time, regardless of the sequence in which they were defined in the screen section.

11. See [Data Description Clauses|, page 149, for information on the usage of the various data
description clauses.

31 May 2018 Chapter 6 - DATA DIVISION



142

GnuCOBOL 3.0 rcl [03May2018] Programmer’s Guide

6.8. Special Data Items
6.8.1. 01-Level Constants

{

01-Level-Constant Syntax

01 constant-name-1 CONSTANT [ IS GLOBAL ]

{ AS { literal-1 Fr.
{ { { BYTE-LENGTH } OF { identifier-1 } } }
{ {{~~rommeee } { usage-name } } }
{ { { LENGTH } )
« T }
{ FROM CDF-variable-name-1 }

This syntax is valid in the following sections:

FILE, WORKING-STORAGE, LOCAL-STORAGE, LINKAGE, SCREEN

The 01-level constant is one of four types of compilation-time constants that can be declared
within a program. The other three types are ">>DEFINE" CDF directive (see [>>DEFINE],
page 70) constants, ">>SET" CDF directive (see [>>SET], page 73) constants and 78-level con-
stants (see [78-Level Data Items|, page 147).

The reserved words "AS", "IS" and "OF" are optional and may be included, or not, at the
discretion of the programmer. The presence or absence of these words has no effect upon
the program.

See [GLOBAL]J, page 170, for information on the "GLOBAL" option.

This particular type of constant declaration provides the ability to determine the length of
a data item or the storage size associated with a particular numeric "USAGE" (see [USAGE],
page 210) type — something not possible with the other types of constants.

Constants defined in this way become undefined once an "END PROGRAM" or "END
FUNCTION" is encountered in the input source.

Data descriptions of this form do not actually allocate any storage — they merely define a
name (<constant-name-1>) that may be used anywhere a numeric literal ("BYTE-LENGTH"
or "LENGTH" options) or a literal of the same type as <literal-1> may be used.

The <constant-name-1> name may not be referenced on a CDF directive.

Care must be taken that <constant-name-1> does not duplicate any other data item name
that has been defined in the program as references to that data item name will refer to the
constant and not the data item. The GnuCOBOL compiler will not issue a warning about
this condition.

The wvalue specified for <usage-name> may be any "USAGE" that does not
use a "PICTURE" (see [PICTURE], page 186) clause. These would be any
of "BINARY-C-LONG", "BINARY-CHAR", "BINARY-DOUBLE", "BINARY-LONG",
"BINARY-SHORT", "COMP-1" (or "COMPUTATIONAL-1"), "COMP-2" (or "COMPUTATIONAL-2"),

Chapter 6 - DATA DIVISION 31 May 2018



GnuCOBOL 3.0 rcl [03May2018] Programmer’s Guide

143

"FLOAT-DECIMAL-16", "FLOAT-DECIMAL-34", "FLOAT-LONG", "FLOAT-SHORT", "POINTER",
or "PROGRAM-POINTER".

9. The "BYTE-LENGTH" clause will produce a numeric value for <constant-name-1> identical
to that which would be returned by the "BYTE-LENGTH" intrinsic function executed against
<identifier-1> or a data item declared with a "USAGE" of <usage-name>.

10. The "LENGTH" clause will produce a numeric value for <constant-name-1> identical to that
which would be returned by the "LENGTH" intrinsic function executed against <identifier-1>
or a data item declared with a "USAGE" of <usage-name>.

Here is the listing of a GnuCOBOL program that uses 01-level constants to display the length

(in bytes) of the various picture-less usage types.

IDENTIFICATION DIVISION.
PROGRAM-ID. Usage Lengths.
DATA DIVISION.

WORKING-STORAGE SECTION.

AS
AS
AS
AS
AS
AS
AS
AS
AS
AS
AS
AS
AS

LENGTH
LENGTH
LENGTH
LENGTH
LENGTH
LENGTH
LENGTH
LENGTH
LENGTH
LENGTH
LENGTH
LENGTH
LENGTH

OF
OF
OF
OF
OF
OF
OF
OF
OF
OF
OF
OF
OF

BINARY-C-LONG.
BINARY-CHAR.
BINARY-DOUBLE.
BINARY-LONG.
BINARY-SHORT.
COMP-1.

COMP-2.
FLOAT-DECIMAL-16.
FLOAT-DECIMAL-34.
FLOAT-LONG.
FLOAT-SHORT.
POINTER.
PROGRAM-POINTER.

01 Len-BINARY-C-LONG CONSTANT
01 Len-BINARY-CHAR CONSTANT
01 Len-BINARY-DOUBLE CONSTANT
01 Len-BINARY-LONG CONSTANT
01 Len-BINARY-SHORT CONSTANT
01 Len-COMP-1 CONSTANT
01 Len-COMP-2 CONSTANT
01 Len-FLOAT-DECIMAL-16 CONSTANT
01 Len-FLOAT-DECIMAL-34 CONSTANT
01 Len-FLOAT-LONG CONSTANT
01 Len-FLOAT-SHORT CONSTANT
01 Len-POINTER CONSTANT
01 Len-PROGRAM-POINTER CONSTANT
PROCEDURE DIVISION.
000-Main.
DISPLAY "On this system, with
DISPLAY "PICTURE-less USAGE’s
DISPLAY " "
DISPLAY "BINARY-C-LONG: "
DISPLAY "BINARY-CHAR: "
DISPLAY "BINARY-DOUBLE: "
DISPLAY "BINARY-LONG: "
DISPLAY "BINARY-SHORT: "
DISPLAY "COMP-1: "
DISPLAY "COMP-2: "
DISPLAY "FLOAT-DECIMAL-16: "
DISPLAY "FLOAT-DECIMAL-34: "
DISPLAY "FLOAT-LONG: "
DISPLAY "FLOAT-SHORT: "
DISPLAY "POINTER: "
DISPLAY "PROGRAM-POINTER: "
STOP RUN

31 May 2018

this build of GnuCOBOL, the"
have these lengths (in bytes):"

Len-BINARY-C-LONG
Len-BINARY-CHAR
Len-BINARY-DOUBLE
Len-BINARY-LONG
Len-BINARY-SHORT
Len-COMP-1
Len-COMP-2
Len-FLOAT-DECIMAL-16
Len-FLOAT-DECIMAL-34
Len-FLOAT-LONG
Len-FLOAT-SHORT
Len-POINTER
Len-PROGRAM-POINTER

Chapter 6 - DATA DIVISION



144 GnuCOBOL 3.0 rcl [03May2018] Programmer’s Guide

The output of this program, on a Windows 7 system with a 32-bit MinGW build of GnuCOBOL
is:

On this system, with this build of GnuCOBOL, the
PICTURE-less USAGE’s have these lengths (in bytes):

BINARY-C-LONG: 4
BINARY-CHAR: 1
BINARY-DOUBLE: 8
BINARY-LONG: 4
BINARY-SHORT: 2
COMP-1: 4
COMP-2: 8
FLOAT-DECIMAL-16: 8
FLOAT-DECIMAL-34: 16
FLOAT-LONG: 8
FLOAT-SHORT: 4
POINTER: 4
PROGRAM-POINTER: 4

Chapter 6 - DATA DIVISION 31 May 2018



GnuCOBOL 3.0 rcl [03May2018] Programmer’s Guide 145

6.8.2. 66-Level Data Items

[ 66-Level-Data-Item Syntax }

66 identifier-1 RENAMES identifier-2 [ THRU|THROUGH identifier-3 ]

This syntax is valid in the following sections:
FILE, WORKING-STORAGE, LOCAL-STORAGE, LINKAGE

A 66-level data item regroups previously defined items by specifying alternative, possibly over-
lapping, groupings of elementary data items.

1. The reserved words "THRU" and "THROUGH" are interchangeable.
2. A level-66 data item cannot rename a level-66, level-01, level-77, or level-88 data item.

3. There may be multiple level-66 data items that rename data items contained within the
same 01-level record description.

4. All "RENAMES" entries associated with one logical record must immediately follow that
record’s last data description entry.

31 May 2018 Chapter 6 - DATA DIVISION



146 GnuCOBOL 3.0 rcl [03May2018] Programmer’s Guide

6.8.3. 77-Level Data Items

[ 77-Level-Data-Item Syntax

77 identifier-1 [ IS GLOBAL|EXTERNAL ]

[ BASED ]

[ BLANK WHEN ZERO ]

[ JUSTIFIED RIGHT ]

[ PICTURE IS picture-string ]

[ REDEFINES identifier-5 ]

[ SYNCRONIZED|SYNCHRONISED [ LEFT|RIGHT ] 1]

[ USAGE IS data-item-usage ]

The "LEFT" and "RIGHT" (SYNCRONIZED) clauses are syntactically recognized but are other-
wise non-functional.

This syntax is valid in the following sections:
WORKING-STORAGE, LOCAL-STORAGE, LINKAGE

The intent of a 77-level item is to be able to create a stand-alone elementary data item.

1. The reserved words "CHARACTER", "IS", "RIGHT" (JUSTIFIED) and "WHEN" are optional
and may be included, or not, at the discretion of the programmer. The presence or absence
of these words has no effect upon the program.

2. The reserved word "JUSTIFIED" may be abbreviated as "JUST", the reserved word
"PICTURE" may be abbreviated as "PIC" and the reserved words "SYNCRONIZED" and
"SYNCHRONISED" may be abbreviated as "SYNC".

3. New programs requiring a stand-alone elementary item should be coded to use a level
number of 01 rather than 77.

4. See [Data Description Clauses], page 149, for information on the usage of the various data
description clauses.

Chapter 6 - DATA DIVISION 31 May 2018



GnuCOBOL 3.0 rcl [03May2018] Programmer’s Guide 147

6.8.4. 78-Level Data Items

:

78-Level-Constant Syntax

78 constant-name-1 VALUE IS literal-1 .

This syntax is valid in the following sections:
FILE, WORKING-STORAGE, LOCAL-STORAGE, LINKAGE, SCREEN

The 78-level constant is one of four types of compilation-time constants that can be declared
within a program. The other three types are ">>DEFINE" CDF directive (see [>>DEFINE],
page 70) constants, ">>SET" CDF directive (see [>>SET], page 73) constants and 01-level con-
stants (see [01-Level Constants|, page 142).

1.

The reserved word "IS" is optional and may be included, or not, at the discretion of the
programmer. The presence or absence of this word has no effect upon the program.

Constants defined in this way become undefined once an "END PROGRAM" or "END
FUNCTION" is encountered in the input source.

Data descriptions of this form do not actually allocate any storage — they merely define
a name (<constant-name-1>) that may be used anywhere a literal of the same type as
<literal-1> may be used.

The <constant-name-1> name may not be referenced on a CDF directive.

Care must be taken that <constant-name-1> does not duplicate any other data item name
that has been defined in the program as references to that data item name will refer to the
constant and not the data item. The GnuCOBOL compiler will not issue a warning about
this condition.

31 May 2018 Chapter 6 - DATA DIVISION



148

GnuCOBOL 3.0 rcl [03May2018] Programmer’s Guide

6.8.5. 88-Level Data Items

:

88-Level-Data-Item Syntax

88 condition-name-1 { VALUE IS } {literal-1 [ THRU|THROUGH literal-2 ]1}...

{ T ommmmr

This syntax is valid in the following sections:
FILE, WORKING-STORAGE, LOCAL-STORAGE, LINKAGE, REPORT, SCREEN

Condition names are Boolean (i.e. TRUE / FALSE) data items that receive their TRUE and
FALSE values based upon the values of the non 88-level data item whose definition they imme-
diately follow.

1.

The reserved words "ARE", "IS", "SET" and "T0" are optional and may be included, or not,
at the discretion of the programmer. The presence or absence of these words has no effect
upon the program.

The reserved words "THRU" and "THROUGH" are interchangeable.

Condition names are always defined subordinate to another (non 88-level) data item. That
data item must be an elementary item. Whenever the parent data item assumes one of the
values specified on the 88-level item’s "VALUE" (see [VALUE], page 220) clause, <condition-
name-1> will take on the value of TRUE.

Condition names do not occupy any storage.
The optional "THROUGH" clause allows a range of possible TRUE values to be specified.

Whenever the parent data item assumes any value except one of the values specified on
<condition-name-1>’s "VALUE" clause, <condition-name-1> will take on the value of FALSE.

Executing the statement "SET <condition-name-1> TO TRUE" will cause <condition-
name-1>’s parent data item to take on the first value specified on <condition-name-1>’s
"VALUE" clause.

Executing the statement "SET <condition-name-1> TO FALSE" will cause <condition-
name-1>’s parent data item to take on the value specified on <condition-name-1>’s "FALSE"
clause. If <condition-name-1> does not have a "FALSE" clause, the "SET" (see [SET],
page 345) statement will generate an error message at compilation time.

See [Condition Names|, page 45, for more information.

Chapter 6 - DATA DIVISION 31 May 2018



GnuCOBOL 3.0 rcl [03May2018] Programmer’s Guide 149

6.9. Data Description Clauses

6.9.1. ANY LENGTH

[ ANY LENGTH Attribute Syntax

ANY LENGTH

This syntax is valid in the following sections:

LINKAGE

Data items declared with the "ANY LENGTH" attribute have no fixed compile-time length. Such
items may only be defined in the linkage section of a subprogram as they may only serve
as subroutine argument descriptions. These items must have a "PICTURE" (see [PICTURE],
page 186) clause that specifies exactly one A, X or 9 symbol.

1. The "ANY LENGTH" and "BASED" (see [BASED], page 154) clauses cannot be used together
in the same data item description.

31 May 2018 Chapter 6 - DATA DIVISION



150 GnuCOBOL 3.0 rcl [03May2018] Programmer’s Guide

6.9.2. AUTO

[ AUTO Attribute Syntax }

AUTO

This syntax is valid in the following sections:
SCREEN

A field whose description includes this attribute will cause the cursor to automatically advance
to the next input-enabled field of a screen if the field is completely filled with input data.

1. The "AUTO", "AUTO-SKIP" (See [AUTO—SKIP], page 151) and "AUTOTERMINATE" (See
[AUTOTERMINATE], page 152) clauses are interchangeable, and may not be used to-
gether in the same data item description.

Chapter 6 - DATA DIVISION 31 May 2018



GnuCOBOL 3.0 rcl [03May2018] Programmer’s Guide 151

6.9.3. AUTO-SKIP

[ AUTO-SKIP Attribute Syntax }

AUTO-SKIP

This syntax is valid in the following sections:
SCREEN

A field whose description includes this attribute will cause the cursor to automatically advance
to the next input-enabled field of a screen if the field is completely filled with input data.

1. The "AUTO" (see [AUTO], page 150), "AUTO-SKIP" and "AUTOTERMINATE" (see
[AUTOTERMINATE], page 152) clauses are interchangeable, and may not be used
together in the same data item description.

31 May 2018 Chapter 6 - DATA DIVISION



152 GnuCOBOL 3.0 rcl [03May2018] Programmer’s Guide

6.9.4. AUTOTERMINATE

[ AUTOTERMINATE Attribute Syntax }

AUTOTERMINATE

This syntax is valid in the following sections:
SCREEN

A field whose description includes this attribute will cause the cursor to automatically advance
to the next input-enabled field of a screen if the field is completely filled with input data.

1. The "AUTO" (see [AUTO], page 150), "AUTO-SKIP" (see [AUTO-SKIP], page 151) and
"AUTOTERMINATE" clauses are interchangeable, and may not be used together in the same
data item description.

Chapter 6 - DATA DIVISION 31 May 2018



GnuCOBOL 3.0 rcl [03May2018] Programmer’s Guide 153

6.9.5. BACKGROUND-COLOR

[ BACKGROUND-COLOR. Attribute Syntax

BACKGROUND-COLOR | BACKGROUND-COLOUR IS integer-1 | identifier-1

This syntax is valid in the following sections:
SCREEN

This clause is used to specify the screen background color of the screen data item or the default
screen background color of subordinate items if used on a group item.

1. The reserved word "IS" is optional and may be included, or not, at the discretion of the
programmer. The presence or absence of this word has no effect upon the program.

2. The reserved words "BACKGROUND-COLOR" and "BACKGROUND-COLOUR" are interchangeable.

3. You specify colors by number (0-7), or by using the constant names provided in the "scree-
nio.cpy" copybook (which is provided with all GnuCOBOL source distributions).

4. Colors may also be specified using a numeric non-edited identifier whose value is in the
range 0-7.

See [Color Palette and Video Attributes|, page 21, for more information on screen colors and
video attributes.

31 May 2018 Chapter 6 - DATA DIVISION



154 GnuCOBOL 3.0 rcl [03May2018] Programmer’s Guide

6.9.6. BASED

[ BASED Attribute Syntax }

This syntax is valid in the following sections:
WORKING-STORAGE, LOCAL-STORAGE, LINKAGE

Data items declared with "BASED" are allocated no storage at compilation time. At run-time, the
"ALLOCATE" (see [ALLOCATE], page 261) or "SET ADDRESS" (see [SET ADDRESS], page 347)
statements are used to allocate space for and (optionally) initialize such items.

1. The "BASED" and "ANY LENGTH" (see [ANY LENGTH], page 149) clauses cannot be used
together in the same data item description.

2. The "BASED" clause may only be used on level 01 and level 77 data items.

Chapter 6 - DATA DIVISION 31 May 2018



GnuCOBOL 3.0 rcl [03May2018] Programmer’s Guide 155

6.9.7. BEEP

[ BEEP Attribute Syntax

BEEP

This syntax is valid in the following sections:
SCREEN

1. The "BEEP" and "BELL" (see [BELL], page 156) clauses are interchangeable, and may not
be used together in the same data item description.

2. Use this clause to cause an audible tone to occur when the screen item is DISPLAYed.

31 May 2018 Chapter 6 - DATA DIVISION



156 GnuCOBOL 3.0 rcl [03May2018] Programmer’s Guide

6.9.8. BELL

[ BELL Attribute Syntax

BELL

This syntax is valid in the following sections:
SCREEN

1. The "BEEP" (see [BEEP], page 155) and "BELL" clauses are interchangeable, and may not
be used together in the same data item description.

2. Use this clause to cause an audible tone to occur when the screen item is DISPLAYed.

Chapter 6 - DATA DIVISION 31 May 2018



GnuCOBOL 3.0 rcl [03May2018] Programmer’s Guide 157

6.9.9. BLANK

[ BLANK Attribute Syntax }

BLANK LINE|SCREEN

This syntax is valid in the following sections:
SCREEN

This clause will blank out either the entire screen (BLANK SCREEN) or just the line upon
which data is about to be displayed (BLANK LINE).

1. Blanked-out areas will have their foreground and background colors set to the attributes of
the field containing the "BLANK" clause.

2. This clause is useful when one screen section item is being displayed over the top of a
previously-displayed one.

31 May 2018 Chapter 6 - DATA DIVISION



158 GnuCOBOL 3.0 rcl [03May2018] Programmer’s Guide

6.9.10. BLANK WHEN ZERO

[ BLANK-WHEN-ZERO Attribute Syntax }

BLANK WHEN ZERO

This syntax is valid in the following sections:
FILE, WORKING-STORAGE, LOCAL-STORAGE, LINKAGE, REPORT, SCREEN

This clause will cause that item’s value to be automatically transformed into spaces if a value
of 0 is ever MOVEd to the item.

1. The reserved word "WHEN" is optional and may be included, or not, at the discretion of the
programmer. The presence or absence of this word has no effect upon the program.

2. This clause may only be used on a PIC 9 data item with a "USAGE" (see [USAGE], page 210)
of "DISPLAY".

Chapter 6 - DATA DIVISION 31 May 2018



GnuCOBOL 3.0 rcl [03May2018] Programmer’s Guide 159

6.9.11. BLINK

[ BLINK Attribute Syntax }

This syntax is valid in the following sections:
SCREEN

The "BLINK" clause modifies the visual appearance of the displayed field by making the field
contents blink.

See [Color Palette and Video Attributes|, page 21, for more information on screen colors and
video attributes.

31 May 2018 Chapter 6 - DATA DIVISION



160

GnuCOBOL 3.0 rcl [03May2018] Programmer’s Guide

6.9.12. COLUMN

:

COLUMN (REPORT SECTION) Clause Syntax }

COLUMN [ { NUMBER IS } ] [ +|PLUS ] integer-1 ]

{ NUMBERS ARE } T

[

COLUMN (SCREEN SECTION) Clause Syntax

COLUMN NUMBER IS [ +|PLUS ] integer-2 | identifier-3 ]

This syntax is valid in the following sections:
REPORT, SCREEN

The "COLUMN" clause provides the means of stating in which column a field should be presented
on the console window (screen section) or a report (report section).

1.

The reserved words "ARE", "IS", "NUMBER" and "NUMBERS" are optional and may be in-
cluded, or not, at the discretion of the programmer. The presence or absence of these words
has no effect upon the program.

The reserved word "COLUMN" may be abbreviated as "COL".

The line location of a report section or screen section field will be determined by the "LINE"
(see [LINE], page 177) clause.

The value of <integer-1> must be 1 or greater.

If <identifier-1> is used to specify either an absolute or relative column position, <identifier-
1> must be defined as a numeric item of any "USAGE" (see [USAGE], page 210) other
than "COMPUTATIONAL-1" or "COMPUTATIONAL-2", without editing symbols. The value of
<identifier-1> at the time the screen data item is presented must be 1 or greater. Note that
a "COMPUTATIONAL-1" or "COMPUTATIONAL-2" identifier will be accepted by the compiler,
but will produce unpredictable results at run-time.

The column coordinate of a field may be stated on an absolute basis (i.e. "COLUMN 5") or
on a relative basis based upon the end of the previously-presented field (i.e. "COLUMN PLUS
1" ) .

The symbol "+" may be used in lieu of the word "PLUS", if desired; if symbol "+" is used,
however, there must be at least one space separating it from <integer-1>. Failure to include
this space will cause the symbol "+" sign to be simply treated as part of <integer-1> and
will treat the "COLUMN" clause as an absolute column specification rather than a relative
one.

Using relative column positioning ("COLUMN PLUS") has slightly different behaviour depend-
ing upon the section in which the clause is used, as follows:

A. When used on a report section data item, "COLUMN PLUS" will position the start of the
new field’s value such that there are <integer-1> blank columns between the end of the
previous field and the beginning of this field.

Chapter 6 - DATA DIVISION 31 May 2018



GnuCOBOL 3.0 rcl [03May2018] Programmer’s Guide 161

If a report data item’s description includes the "SOURCE" (see [SOURCE], page 202),
"SUM" (see [SUM], page 472) or "VALUE" (see [VALUE], page 220) clause but has no
"COLUMN" clause, "COLUMN PLUS 1" will be assumed.

B. When used on a screen section data item, "COLUMN PLUS" will position the new field so
that it begins exactly <integer-1> or <identifier-1> characters past the last character
of the previous field. Thus, "COLUMN PLUS 1" will leave no blank positions between
the end of the previous field and the start of this one.

If a screen data item’s description includes the "FROM" (see [FROM], page 168), "TO"
(see [TO], page 207), "USING" (see [USING], page 219) or "VALUE" (see [VALUE],
page 220) clause but has no "COLUMN" clause, the new screen field will begin at the
column coordinate of the last character of the previous field.

31 May 2018 Chapter 6 - DATA DIVISION



162 GnuCOBOL 3.0 rcl [03May2018] Programmer’s Guide

6.9.13. CONSTANT

[ CONSTANT Attribute Syntax }

CONSTANT

This syntax is valid in the following sections:
FILE, WORKING-STORAGE, LOCAL-STORAGE, LINKAGE, SCREEN

This option signifies that the 0l-level data item in whose declaration "CONSTANT" is specified
will be treated as a symbolic name for a literal value, usable wherever a literal of the appropriate
type could be used.

1. The value of a data item defined as a constant cannot be changed at run-time. In fact,
it is not syntactically acceptable to use such a data item as the destination field of any
procedure division statement that stores a value.

2. See [01-Level Constants|, page 142, for additional information.

Chapter 6 - DATA DIVISION 31 May 2018



GnuCOBOL 3.0 rcl [03May2018] Programmer’s Guide 163

6.9.14. EMPTY-CHECK

[ EMPTY-CHECK Attribute Syntax

EMPTY-CHECK

This syntax is valid in the following sections:
SCREEN

This clause forces the user to enter data into the field it is specified on (or into all subordinate
input-capable fields if "EMPTY-CHECK" is specified on a group item).

1. The "EMPTY-CHECK" and "REQUIRED" (see [REQUIRED], page 198) clauses are interchange-
able, and may not be used together in the same data item description.

2. In order to take effect, the user must first move the cursor into the field having this clause
in its definition.

3. The "ACCEPT screen-data-item" statement (see [ACCEPT screen-data-item], page 246)
will ignore the Enter key and any other cursor-moving keystrokes that would cause the
cursor to move to another screen item unless data has been entered into the field. Function
keys will still be allowed to terminate the "ACCEPT".

4. In order to be functional, this attribute must be supported by the underlying ’curses’
package your GnuCOBOL implementation was built with. As of this time, the 'PDCurses’
package (used for native Windows or MinGW builds) does not support "EMPTY-CHECK".

31 May 2018 Chapter 6 - DATA DIVISION



164 GnuCOBOL 3.0 rcl [03May2018] Programmer’s Guide

6.9.15. ERASE

[ ERASE Clause Syntax }

ERASE EOL|EOS

This syntax is valid in the following sections:
SCREEN

"ERASE" will blank-out screen contents from the location where the screen data item whose
description contains this clause will be displayed, forward until the end of the screen ("ERASE
EO0S") or line ("ERASE EOL") prior to displaying the screen data item.

1. Erased areas will have their foreground and background colors set to the attributes of the
field containing the "ERASE" clause.

2. This clause is useful when one screen section item is being displayed over the top of a
previously-displayed one.

See [Color Palette and Video Attributes|, page 21, for more information on screen colors and
video attributes.

Chapter 6 - DATA DIVISION 31 May 2018



GnuCOBOL 3.0 rcl [03May2018] Programmer’s Guide 165

6.9.16. EXTERNAL

[ EXTERNAL Attribute Syntax }

EXTERNAL

This syntax is valid in the following sections:
FILE, WORKING-STORAGE, LOCAL-STORAGE

This clause marks a data item description, "FD" or "SD" see [File/Sort-Description], page 121,
as being shareable with other programs executed from the same execution thread.

1. By specifying the "EXTERNAL" clause on either an FD or an SD, the file description is capable
of being shared between all programs executed from the same execution thread, provided
an "EXTERNAL" clause is coded with the file’s description in each program requiring it. This
sharing allows the file to be opened, read and/or written and closed in different programs.
This sharing applies to the record descriptions subordinate to the file description too.

2. By specifying the "EXTERNAL" clause on the description of a data item, the data item is
capable of being shared between all programs executed from the same execution thread,
provided the data item is coded (with an "EXTERNAL" clause) in each program requiring it.

3. The following points apply to the specification of "EXTERNAL" in a data item’s definition:
A. The "EXTERNAL" clause may only be specified at the 77 or 01 level.
B. An "EXTERNAL" item must have a data name and that name cannot be "FILLER".

C. "EXTERNAL" cannot be combined with "BASED" (see [BASED], page 154), "GLOBAL"
(see [GLOBAL], page 170) or "REDEFINES" (see [REDEFINES], page 196).

31 May 2018 Chapter 6 - DATA DIVISION



166 GnuCOBOL 3.0 rcl [03May2018] Programmer’s Guide

6.9.17. FALSE

[ FALSE Clause Syntax }

WHEN SET TO FALSE IS literal-1

This syntax is valid in the following sections:
FILE, WORKING-STORAGE, LOCAL-STORAGE, LINKAGE, REPORT, SCREEN

This clause, which may only appear on the definition of a level-88 condition name, is used to
specify the value of the data item that serves as the parent of the level-88 condition name that
will force the condition name to assume a value of FALSE.

1. The reserved words "IS", "SET", "TO" and "WHEN" are optional and may be included, or
not, at the discretion of the programmer. The presence or absence of these words has no
effect upon the program.

2. See [88-Level Data Items], page 148, or See [Condition Names|, page 45, for more informa-
tion.

Chapter 6 - DATA DIVISION 31 May 2018



GnuCOBOL 3.0 rcl [03May2018] Programmer’s Guide 167

6.9.18. FOREGROUND-COLOR

[ FOREGROUND-COLOR Attribute Syntax

FOREGROUND-COLOR | FOREGROUND-COLOUR IS integer-1 | identifier-1

This syntax is valid in the following sections:
SCREEN

This clause is used to specify the color of text within a screen data item or the default text color
of subordinate items if used on a group item.

1. The reserved word "IS" is optional and may be included, or not, at the discretion of the
programmer. The presence or absence of this word has no effect upon the program.

2. The reserved words "FOREGROUND-COLOR" and "FOREGROUND-COLOUR" are interchangeable.

3. You specify colors by number (0-7), or by using the constant names provided in the "scree-
nio.cpy" copybook (which is provided with all GnuCOBOL source distributions).

4. Colors may also be specified using a numeric non-edited identifier whose value is in the
range 0-7.

See [Color Palette and Video Attributes|, page 21, for more information on screen colors and
video attributes.

31 May 2018 Chapter 6 - DATA DIVISION



168 GnuCOBOL 3.0 rcl [03May2018] Programmer’s Guide

6.9.19. FROM

[ FROM Clause Syntax }

FROM literal-1 | identifier-5

This syntax is valid in the following sections:
SCREEN

This clause is used to specify either the data item a screen section field is to obtain it’s value
from when the screen is displayed, or a literal that will specify the value of that same field.

1. The "FROM", "TO" (see [TO], page 207), "USING" (see [USING], page 219) and "VALUE"
(see [VALUE], page 220) clauses are mutually-exclusive in any screen section data item’s
definition.

Chapter 6 - DATA DIVISION 31 May 2018



GnuCOBOL 3.0 rcl [03May2018] Programmer’s Guide 169

6.9.20. FULL

[ FULL Attribute Syntax }

FULL

This syntax is valid in the following sections:
SCREEN

The "FULL" clause forces the user to enter data into the field it is specified on (or into all
subordinate input-capable fields if specified on a group item) sufficient to fill every character
position of the field.

1. The "FULL" and "LENGTH-CHECK" (see [LENGTH-CHECK], page 176) clauses are inter-
changeable, and may not be used together in the same data item description.

2. In order for this clause to take effect at execution time, the user must move the cursor into
the field having this clause in its definition.

3. The "ACCEPT screen-data-item" statement (see [ACCEPT screen-data-item], page 246)
will ignore the Enter key and any other cursor-moving keystrokes that would cause the
cursor to move to another screen item unless the proper amount of data has been entered
into the field. Function keys will still be allowed to terminate the "ACCEPT", however.

4. In order to be functional, this attribute must be supported by the underlying ’curses’
package your GnuCOBOL implementation was built with. As of this time, the 'PDCurses’
package (used for native Windows or MinGW builds) does not support "FULL".

31 May 2018 Chapter 6 - DATA DIVISION



170 GnuCOBOL 3.0 rcl [03May2018] Programmer’s Guide

6.9.21. GLOBAL

[ GLOBAL Attribute Syntax

GLOBAL

This syntax is valid in the following sections:
FILE, WORKING-STORAGE, LOCAL-STORAGE, REPORT

This clause marks a data item, 01l-level constant, "FD" (see [File/Sort-Description], page 121),
"SD" (see [File/Sort-Description]|, page 121) or an "RD" (see [REPORT SECTION], page 132)
as being shareable with any nested subprograms.

1. By specifying the "GLOBAL" clause on the description of a file or a report, that description
is capable of being shared between a program and any nested subprograms within it, pro-
vided the "FD", "SD" or "RD" is coded (with a "GLOBAL" clause) in each nested subprogram
requiring it. This sharing allows the file to be opened, read and/or written and closed
or the report to be initiated or terminated in those programs. Separately compiled pro-
grams may not share a "GLOBAL" file description, but they may share an "EXTERNAL" (see
[EXTERNAL]J, page 165) file description. This sharing applies to the record descriptions
subordinate to the file description and the report groups subordinate to the "RD" also.

2. By specifying the "GLOBAL" clause on the description of a data item, the data item is capable
of being shared between a program and any nested subprograms within it, provided the data
item is coded (with a "GLOBAL" clause) in each program requiring it.

3. The following points apply to the specification of "GLOBAL" in a data item’s definition:
A. The "GLOBAL" clause may only be specified at the 77 or 01 level.

B. A "GLOBAL" item must have a data name and that name cannot be "FILLER".

C. "GLOBAL" cannot be combined with "EXTERNAL" (see [EXTERNALJ, page 165),
"REDEFINES" (see [REDEFINES], page 196) or "BASED" (see [BASED], page 154).

Chapter 6 - DATA DIVISION 31 May 2018



GnuCOBOL 3.0 rcl [03May2018] Programmer’s Guide 171

6.9.22. GROUP INDICATE

[ GROUP-INDICATE Attribute Syntax }

GROUP INDICATE

This syntax is valid in the following sections:
REPORT

The "GROUP INDICATE" clause specifies that the data item in whose definition the clause appears
will be presented only in very limited circumstances.

1. This clause may only appear within a "DETAIL" report group (see [TYPE], page 208).

2. When this clause is present, the data item in question will be presented only under the
following circumstances:

A. On the first presentation of the detail group following the "INITIATE" (see [INITTATE],
page 307) of the report.

B. On the first presentation of the detail group after every new page is started.

C. On the first presentation of the detail group after any control break occurs.

31 May 2018 Chapter 6 - DATA DIVISION



172 GnuCOBOL 3.0 rcl [03May2018] Programmer’s Guide

6.9.23. HIGHLIGHT

[ HIGHLIGHT Attribute Syntax }

HIGHLIGHT

This syntax is valid in the following sections:
SCREEN

This clause controls the intensity of text ("FOREGROUND-COLOR" (see [FOREGROUND-COLOR],
page 167)) by setting that intensity to its highest of three possible settings.

1. This clause, along with "LOWLIGHT" (see [LOWLIGHT], page 179), are intended to provide
a three-level intensity scheme ("LOWLIGHT" ... nothing (Normal) ... "HIGHLIGHT").

See [Color Palette and Video Attributes|, page 21, for more information on screen colors and
video attributes.

Chapter 6 - DATA DIVISION 31 May 2018



GnuCOBOL 3.0 rcl [03May2018] Programmer’s Guide 173

6.9.24. JUSTIFIED

[ JUSTIFIED Attribute Syntax }

JUSTIFIED RIGHT

This syntax is valid in the following sections:
FILE, WORKING-STORAGE, LOCAL-STORAGE, LINKAGE, REPORT, SCREEN

The presence of a "JUSTIFIED RIGHT" clause in a data item’s definition alters the manner in
which data is stored into the field from the default ’left-justified, space filled’ behaviour to 'right
justified, space filled’.

1. The reserved word "RIGHT" is optional and may be included, or not, at the discretion of
the programmer. The presence or absence of this word has no effect upon the program.

2. The reserved word "JUSTIFIED" may be abbreviated as "JUST".
3. This clause is valid only on alphabetic (PIC A) or alphanumeric (PIC X) data items.

4. The presence or absence of this clause influences the behaviour of the "MOVE" (see [MOVE],
page 316) statement as well as the "FROM" (see [FROM], page 168), "SOURCE" (see
[SOURCE], page 202) and "USING" (see [USING], page 219) data item description clauses.

5. If the value being stored into the field is the same length as the receiving field, the presence
or absence of the "JUSTIFIED RIGHT" clause on that field’s description is irrelevant.

6. The following examples illustrate the behaviour of the presence and absence of the
"JUSTIFIED RIGHT" clause when the field size is different than that of the value being
stored. In these examples, the symbol b represents a space.

When the value is shorter than the field size...

Without JUSTIFIED With JUSTIFIED
01 A PIC X(6). 01 A PIC X(6) JUSTIFIED RIGHT.
MOVE "ABC" TO A MOVE "ABC" TO A
Result is TABCbHbY’ Result is bbb ABC’

When the value is longer than the field size...

Without JUSTIFIED With JUSTIFIED

01 A PIC X(6). 01 A PIC X(6) JUSTIFIED RIGHT.

31 May 2018 Chapter 6 - DATA DIVISION



174 GnuCOBOL 3.0 rcl [03May2018] Programmer’s Guide

MOVE "ABCDEFGHI" TO A MOVE "ABCDEFGHI" TO A

Result is "ABCDEFE” Result is 'DEFGHT’

Chapter 6 - DATA DIVISION 31 May 2018



GnuCOBOL 3.0 rcl [03May2018] Programmer’s Guide 175

6.9.25. LEFTLINE

[ LEFTLINE Attribute Syntax }

LEFTLINE

This syntax is valid in the following sections:
SCREEN

The "LEFTLINE" clause will introduce a vertical line at the left edge of a screen field.

1. The "LEFTLINE", "OVERLINE" (see [OVERLINE]|, page 185) and "UNDERLINE" (see
[UNDERLINE], page 209) clauses may be used in any combination in a single field’s
description.

2. This clause is essentially non-functional when used within Windows command shell

(cmd.exe) environments and running programs compiled using a GnuCOBOL implementa-
tion built using 'PDCurses’ (such as Windows/MinGW builds).

3. Whether or not this clause operates on Cygwin or UNIX/Linux/OSX systems will depend
upon the video attribute capabilities of the terminal output drivers and ’curses’ software

being used.

See [Color Palette and Video Attributes|, page 21, for more information on screen colors and
video attributes.

31 May 2018 Chapter 6 - DATA DIVISION



176 GnuCOBOL 3.0 rcl [03May2018] Programmer’s Guide

6.9.26. LENGTH-CHECK

[ LENGTH-CHECK Attribute Syntax

LENGTH-CHECK

This syntax is valid in the following sections:
SCREEN

The "LENGTH-CHECK" clause forces the user to enter data into the field it is specified on (or into
all subordinate input-capable fields if specified on a group item) sufficient to fill every character
position of the field.

1. The "FULL" (see [FULLJ, page 169) and "LENGTH-CHECK" clauses are interchangeable, and
may not be used together in the same data item description.

2. In order for this clause to take effect at execution time, the user must move the cursor into
the field having this clause in its definition.

3. The "ACCEPT screen-data-item" statement (see [ACCEPT screen-data-item], page 246)
will ignore the Enter key and any other cursor-moving keystrokes that would cause the
cursor to move to another screen item unless the proper amount of data has been entered
into the field. Function keys will still be allowed to terminate the "ACCEPT", however.

4. In order to be functional, this attribute must be supported by the underlying ’curses’
package your GnuCOBOL implementation was built with. As of this time, the 'PDCurses’
package (used for native Windows or MinGW builds) does not support "LENGTH-CHECK".

Chapter 6 - DATA DIVISION 31 May 2018



GnuCOBOL 3.0 rcl [03May2018] Programmer’s Guide 177

6.9.27.

LINE

:

LINE (REPORT SECTION) Clause Syntax

LINE NUMBER IS { integer-2 [ [ ON NEXT PAGE ] }
2 }

{ +|PLUS integer-2 }

{ = }

}

{ ON NEXT PAGE

:

LINE (SCREEN SECTION) Clause Syntax

[ LINE NUMBER IS [ +|PLUS ] integer-4 | identifier-6 ]

This syntax is valid in the following sections:
REPORT, SCREEN

This clause provides a means of explicitly stating on which line a field should be presented on
the console window (screen section) or on a report (report section).

1. The reserved words "IS", "NUMBER" and "ON" are optional and may be included, or not,
at the discretion of the programmer. The presence or absence of these words has no effect
upon the program.

2. The following points document the use of format 1 of the "LINE" clause:

A.

B.

The column location of a report item will be determined by the "COLUMN" (see
[COLUMN], page 160) clause.

The value of <integer-1> must be 1 or greater.

The report line number upon which the data item containing this clause along with
any subordinate data items will be presented may be stated on an absolute basis (i.e.
"LINE 5") or on a relative basis based upon the previously-displayed line (i.e. "LINE
PLUS 1“).

The symbol "+" may be used in lieu of the word "PLUS", if desired; if "+" is used,
however, there must be at least one space separating it from <integer-1>. Failure to
include this space will cause the "+" to be simply treated as part of <integer-1> and
will treat the LINE clause as an absolute line specification rather than a relative one.

The optional "NEXT PAGE" clause specifies that — regardless of whether or not the re-
port group containing this clause could fit on the report page being currently generated,
the report group will be forced to appear on a new page.

3. The following points document the use for format 2 of the "LINE" clause:

A.

The column location of a screen section field is determined by the "COLUMN" (see
[COLUMN], page 160) clause.

31 May 2018 Chapter 6 - DATA DIVISION



178

GnuCOBOL 3.0 rcl [03May2018] Programmer’s Guide

. The value of <integer-1> must be 1 or greater.

. If <identifier-1> is used to specify either an absolute or relative column position,

<identifier-1> must be defined as a numeric item of any "USAGE" (see [USAGE],
page 210) other than "COMPUTATIONAL-1" or "COMPUTATIONAL-2", without editing
symbols. The value of <identifier-1> at the time the screen data item is presented must
be 1 or greater. Note that a "COMPUTATIONAL-1" or "COMPUTATIONAL-2" identifier will
be accepted by the compiler, but will produce unpredictable results at run-time.

. The screen line number upon which the data item containing this clause along with

any subordinate data items will be displayed may be stated on an absolute basis (i.e.
"LINE 5") or on a relative basis based upon the previously-displayed line (i.e. "LINE
PLUS 1").

. The symbol "+" may be used in lieu of the word "PLUS", if desired; if "+" is used,

however, there must be at least one space separating it from <integer-1>. Failure to
include this space will cause the "+" to be simply treated as part of <integer-1> and
will treat the "LINE" clause as an absolute line specification rather than a relative one.

. If a screen data item’s description includes the "FROM" (see [FROM], page 168), "T0"

(see [TO], page 207), "USING" (see [USING], page 219) or "VALUE" (see [VALUE],
page 220) clause but has no LINE clause, the "current screen line" will be assumed.

Chapter 6 - DATA DIVISION 31 May 2018



GnuCOBOL 3.0 rcl [03May2018] Programmer’s Guide 179

6.9.28. LOWLIGHT

[ LOWLIGHT Attribute Syntax

LOWLIGHT

This syntax is valid in the following sections:
SCREEN

The "LOWLIGHT" clause controls the intensity of text ("FOREGROUND-COLOR") by setting that
intensity to its lowest of three possible settings.

1. This clause, along with "HIGHLIGHT" (see [HIGHLIGHT], page 172), are intended to provide
a three-level intensity scheme ("LOWLIGHT" ... nothing (Normal) ... "HIGHLIGHT"). In
environments such as a Windows console where only two levels of intensity are supported,
"LOWLIGHT" is the same as leaving this clause off altogether.

See [Color Palette and Video Attributes|, page 21, for more information on screen colors and
video attributes.

31 May 2018 Chapter 6 - DATA DIVISION



180

GnuCOBOL 3.0 rcl [03May2018] Programmer’s Guide

6.9.29. NEXT GROUP

:

NEXT-GROUP Clause Syntax }

NEXT GROUP IS { [ +|PLUS ] integer-2 17

”””””” { T }
{ NEXT|{NEXT PAGE}|PAGE }

This syntax is valid in the following sections:
REPORT

This clause defines any rules for where the next group to be presented on a report will begin,
line-wise, with respect to the last line of the group in which this clause appears.

1.

The reserved word "IS" is optional and may be included, or not, at the discretion of the
programmer. The presence or absence of this word has no effect upon the program.

The terms "NEXT", "NEXT PAGE" and "PAGE" are interchangeable.

A report group must contain at least one "LINE NUMBER" clause in order to also contain a
"NEXT GROUP" clause.

If the "RD" (see [REPORT SECTION], page 132) in which the report group containing a
"NEXT GROUP" clause does not contain a "PAGE LIMITS" clause, only the "PLUS integer-1"
option may be specified.

The "NEXT PAGE" option cannot be used in a "PAGE FOOTING".

The "NEXT GROUP" option cannot be specified in either a "REPORT HEADING" or a "PAGE
HEADING".

The effects of "NEXT GROUP" will be in addition to any line spacing defined by the next-
presented group’s "LINE NUMBER" clause.

Chapter 6 - DATA DIVISION 31 May 2018



GnuCOBOL 3.0 rcl [03May2018] Programmer’s Guide 181

6.9.30. NO-ECHO

[ NO-ECHO Attribute Syntax

NO-ECHO

This syntax is valid in the following sections:
SCREEN

The "NO-ECHO" clause will cause all data entered into the field to appear on the screen as
asterisks.

1. The "NO-ECHO" and "SECURE" (see [SECURE], page 200) clauses are interchangeable, and
may not be used together in the same data item description.

2. This clause may only be used on a field allowing data entry (a field containing either the
"USING" (see [USING], page 219) or "TO" (see [TO], page 207) clause).

See [Color Palette and Video Attributes|, page 21, for more information on screen colors and
video attributes.

31 May 2018 Chapter 6 - DATA DIVISION



182 GnuCOBOL 3.0 rcl [03May2018] Programmer’s Guide

6.9.31. OCCURS

[ OCCURS (REPORT SECTION) Clause Syntax }

OCCURS [ integer-1 TO ] integer-2 TIMES

[ DEPENDING ON identifier-1 ]

[ STEP integer-3 ]

[ VARYING identifier-2 FROM { identifier-3 } BY { identifier-4 } ]
””””””” 77~ { integer-4 } "7 { integer-5 }

[ OCCURS (SCREEN SECTION) Clause Syntax }

OCCURS integer-2 TIMES

[ OCCURS (All Other Sections Clause Syntax }

OCCURS [ integer-1 TO ] integer-2 TIMES

[ DEPENDING ON identifier-1 ]

[ ASCENDING|DESCENDING KEY IS identifier-5... 1]...

This syntax is valid in the following sections:
FILE, WORKING-STORAGE, LOCAL-STORAGE, LINKAGE, REPORT, SCREEN

The "OCCURS" clause is used to create a data structure called a table, where entries in that
structure repeat multiple times.

1. The reserved words "BY" (INDEXED), "IS", "KEY", "ON" and "TIMES" are optional and
may be included, or not, at the discretion of the programmer. The presence or absence of
these words has no effect upon the program.

2. The value of <integer-2> specifies how many entries will be allocated in the table.
3. The following is an example of how a table might be defined:
05 QUARTERLY-REVENUE OCCURS 4 TIMES PIC 9(7)V99.

This will allocate the following:
QUARTERLY-REVENUE (1)

Chapter 6 - DATA DIVISION 31 May 2018



GnuCOBOL 3.0 rcl [03May2018] Programmer’s Guide 183

QUARTERLY-REVENUE (2)
QUARTERLY-REVENUE(3)
QUARTERLY-REVENUE (4)

Each occurrence is referenced using the subscript syntax (a numeric literal, arithmetic
expression or numeric identifier enclosed within parenthesis) shown above.

4. The "OCCURS" clause may be used at the group level too, in which case the entire group
structure repeats, as follows:

05 GRP OCCURS 3 TIMES.

10 A PIC X(1).
10 B PIC X(1).
10 C PIC X(1).

This would allow references to any of the following:

GRP(1) - includes A(1), B(1) and C(1)
GRP(2) - includes A(2), B(2) and C(2)
GRP(3) - includes A(3), B(3) and C(3)

or each A,B,C item could be referenced as follows:

A(1) - Character #1 of GRP(1)
B(1) - Character #2 of GRP(1)
C(1) - Character #3 of GRP(1)
A(2) - Character #1 of GRP(2)
B(2) - Character #2 of GRP(2)
C(2) - Character #3 of GRP(2)
A(3) - Character #1 of GRP(3)
B(3) - Character #2 of GRP(3)
C(3) - Character #3 of GRP(3)

5. The optional "DEPENDING ON" clause can be added to an "OCCURS" to create a variable-
length table. In such cases, the value of <integer-1> specifies what the minimum number
of entries in the table will be while <integer-2> specifies the maximum. Such tables will be
allocated out to the maximum size specified as <integer-2>. At execution time the value of
<identifier-1> will determine how many of the table elements are accessible.

6. See the documentation of the "SEARCH" (see [SEARCH], page 341), "SEARCH ALL" (see
[SEARCH ALL], page 343) and "SORT" (see [SORT], page 354) statements for explanations
of the "KEY" and "INDEXED BY" clauses.

7. The "OCCURS" clause cannot be specified in a data description entry that has a level number
of 01, 66, 77, or 88, although it is valid in data items described subordinate to an 01-level
data item.

8. The following points apply to an "OCCURS" used in the report section:

A. The optional "STEP" clause defines an incrementation value that will be added to
any absolute "LINE" (see [LINE], page 177) or "COLUMN" (see [COLUMN], page 160)
number specifications that may be part of or subordinate to this data item’s definition.

B. The optional "VARYING" clause defines an identifier that may be used as a subscript for
the multiple occurrences of this or any subordinate data item should the "SOURCE" (see

31 May 2018 Chapter 6 - DATA DIVISION



184 GnuCOBOL 3.0 rcl [03May2018] Programmer’s Guide

[SOURCE], page 202) or "SUM" (see [SUM], page 472) clause(s) on this or subordinate
data items reference entries within the table. The <identifier-2> data item is dynami-
cally created as needed and cannot be referenced outside the scope of the report data
item definition.

C. The following two examples illustrate two different ways a report could include four
quarters worth of sales figures in it’s detail lines — one doing things *the hard way’ and
one using the advanced "OCCURS" capabilities of "STEP" and "VARYING". Both assume
the definition of the following table exists in working-storage:

05 SALES OCCURS 4 TIMES PIC 9(7)V99.

First, the "Hard Way":

10 COL 7 PIC $(7)9.99 SOURCE SALES(1).
10 COL 17 PIC $(7)9.99 SOURCE SALES(2).
10 COL 27 PIC $(7)9.99 SOURCE SALES(3).
10 COL 37 PIC $(7)9.99 SOURCE SALES(4).

And then using "STEP" and "VARYING":

10 COL 7 O0OCCURS 4 TIMES STEP 10 VARYING QTR FROM 1 BY 1
PIC $(7)9.99 SOURCE SALES(QTR).

Chapter 6 - DATA DIVISION 31 May 2018



GnuCOBOL 3.0 rcl [03May2018] Programmer’s Guide 185

6.9.32. OVERLINE

[ OVERLINE Attribute Syntax }

OVERLINE

This syntax is valid in the following sections:
SCREEN

The "OVERLINE" clause will introduce a horizontal line at the top edge of a screen field.

1. The "LEFTLINE" (see [LEFTLINE], page 175), "OVERLINE" and "UNDERLINE" (see
[UNDERLINE], page 209) clauses may be used in any combination in a single field’s
description.

2. This clause is essentially non-functional when used within Windows command shell

(cmd.exe) environments and running programs compiled using a GnuCOBOL implementa-
tion built using 'PDCurses’ (such as Windows/MinGW builds).

3. Whether or not this clause operates on Cygwin or UNIX/Linux/OSX systems will depend
upon the video attribute capabilities of the terminal output drivers and ’curses’ software

being used.

See [Color Palette and Video Attributes|, page 21, for more information on screen colors and
video attributes.

31 May 2018 Chapter 6 - DATA DIVISION



186

GnuCOBOL 3.0 rcl [03May2018] Programmer’s Guide

6.9.33. PICTURE

:

PICTURE Clause Syntax }

PICTURE IS picture-string

This syntax is valid in the following sections:
FILE, WORKING-STORAGE, LOCAL-STORAGE, LINKAGE, REPORT, SCREEN

The picture clause defines the class (numeric, alphabetic or alphanumeric), size and format of
the data that may be contained by the data item being defined. Sometimes this role is assisted
by the "USAGE" (see [USAGE], page 210) clause, and in a few instances will be assumed entirely
by that clause.

1.

The reserved word "IS" is optional and may be included, or not, at the discretion of the
programmer. The presence or absence of this word has no effect upon the program.

The reserved word "PICTURE" may be abbreviated as "PIC". Most programmers prefer to
use the latter.

A picture clause may only be specified on an elementary item.

A <picture-string> is a sequence of the special symbols "§", """ t4n o w oo o/
IIOII (Zer0)7 ll9|l7 llAll’ IlBll’ IICI{II7 llDBll’ ||Sll’ ll\,ll7 IIXII and ||le.

In general, each picture symbol represents either a single character in storage or a single
decimal digit. There are a few exceptions, and they will be discussed as needed.

When a <picture-string> contains a repeated sequence of symbols — "PIC 9999/99/99" —
for example, the repetition can be specified using a parenthetic repeat count, as in "PIC
9(4)/9(2)/9(2)". Using repeat counts is optional and their use (or not) is entirely at the
discretion of the programmer. Many programmers use repetition for small sequences ("PIC
XXX") and repeat counts for larger ones ("PIC 9(9)".

This first set of picture symbols defines the basic data type of a data item. Each symbol
represents a single character’s worth of storage.

"AM Defines storage reserved for a single alphabetic character ("A"-"Z", "a"-"z").

"N Defines storage reserved for a single character in the computer’s * National Char-
acter set’. Support for national character sets in GnuCOBOL is currently only
partially implemented, and the compile- and run-time effect of using the "N"
picture symbol is the same as if "X(2)" had been coded, with the additional
effect that such a field will qualify as a "NATIONAL" or "NATIONAL-EDITED" field
on an "INITIALIZE" (see [INITIALIZE], page 303) statement.

"X Defines storage reserved for a single alphanumeric character (any character).

"o Defines storage reserved for a single numeric digit character ("0"-"9").

Typically, only one kind of each of those symbols is used in the same picture clause, but
that isn’t a requirement. Data items that, of the three symbols above, use nothing but "A"
picture symbols are known as ’Alphabetic Data Items’ while those that use "9" picture sym-

Chapter 6 - DATA DIVISION 31 May 2018



GnuCOBOL 3.0 rcl [03May2018] Programmer’s Guide 187

bols without any "A" or "X" symbols (or those that have a "USAGE" without a "PICTURE")
are known as 'Numeric Data Items’. All other data items are referred to as ’Alphanumeric
Data Items’.

If you need to allocate space for a data item whose format is two letters followed by
five digits followed by three letters, you could use the <picture-string> "AA99999AAA",
"A(2)9(5)A(3)" "XXXXXXXXXX" or "X(10)". There is absolutely no functional difference
whatsoever between the four — none of them provide any functionality the others do not.
The first two probably make for better documentation of the expected field contents, but
they don’t provide any run-time enforcement capabilities.

As far as enforcement goes, however, both alphabetic and numeric picture strings do provide
for both compile-time and run-time enforcement capabilities. In the case of compilation
enforcement, the compiler can issue warning messages if you attempt to specify a non-
numeric value for a numeric data item or if you attempt to "MOVE" (see [MOVE], page 316)
a non-numeric data item to one that is numeric. Similar capabilities exist for alphabetic
data items. At run-time, you may use a special class test (see [Class Conditions]|, page 46)
to determine if the contents of a data item are entirely numeric or entirely alphabetic.

8. The following picture symbols may be used with numeric data items.

"p" Defines an implied digit position that will be considered to be a zero when the
data item is referenced at run-time. This symbol is used to allow data items
that will contain very large values to be allocated using less storage by assuming
a certain number of trailing zeros (one per "P") to exist at the end of values.

The "P" symbol is not allowed in conjunction with "N".
The "P" symbol may only be used at the beginning or end of a picture clause.
"P" is a repeatable symbol.

All computations and "MOVE" (see [MOVE], page 316) operations involving such
a data item will behave as if the zeros were actually there.

For example, let’s say you need to allocate a data item that contains however
many millions of dollars of revenue your company has in gross revenues this
year:

01 Gross-Revenue PIC 9(9).

In which case 9 characters of storage will be reserved. The values 000000000
through 999999999 will represent the gross-revenues. But, if only the millions
are tracked (meaning the last six digits are always going to be 0), you could
define the field as:

01 Gross-Revenue PIC 9(3)P(6).

Whenever Gross-Revenue is referenced in calculations, or whenever its value is
moved to another data item, the value of Gross-Revenue will be treated as if it
is nnn000000, where 'nnn’ is the actual value in storage.

If you wanted to store the value 128 million into that field, you would do so as
if the "P"s were "9"s:

MOVE 128000000 TO Gross-Revenue

31 May 2018 Chapter 6 - DATA DIVISION



188 GnuCOBOL 3.0 rcl [03May2018] Programmer’s Guide

A "DISPLAY" (see [DISPLAY], page 275) of a data item containing "P" symbols
is a little strange. The value displayed will be what is actually in storage, but
the total size of the displayed value will be as if the "P" symbols had been
"9"s. Thus, after the above statement established a value for Gross-Revenue,
a "DISPLAY Gross-Revenue" would produce output of ’000000128’.

ng This symbol, if used, must be the very first symbol in the "PICTURE" value. A
"S" indicates that the data item is "Signed", meaning that negative values are
possible for this data item. Without an "S", any negative values stored into
this data item via a "MOVE" or arithmetic statement will have the negative sign
stripped from it (in effect becoming the absolute value).

The "S" symbol is not allowed in conjunction with "N".

The "S" symbol may only occur once in a picture string. See [SIGN IS],
page 201, for further discussion of how negative values may be stored in a
numeric data item.

"y This symbol is used to define where an implied decimal-point (if any) is located
in a numeric item. Just as there may only be a single decimal point in a
number so may there be no more than one "V" in a "PICTURE". Implied decimal
points occupy no space in storage — they just specify how values are used. For
example, if the value "1234" is in storage in a field defined as PIC 999V9, that
value would be treated as 123.4 in any statements that referenced it.

The "V" symbol is not allowed in conjunction with "N".

The "V" symbol may only occur once in a picture string.

9. Any editing symbols introduced past this point will, if coded in the picture clause of an
otherwise numeric data item, transform that data item from a numeric to a ’ Numeric Edited’
data item. Numeric edited data items are treated as alphanumeric and may not serve either
as table subscripts or as source arguments on an arithmetic statement.

10. The following are the fixed insertion editing symbols that may be specified in a picture
string. Each of these editing symbols will insert a special character into the field value at
the position it is specified in the picture string. These editing symbols will each introduce
one extra character into the total field size for each occurrence of the symbol in the picture
string.

"B" The "B" editing symbol introduces a blank into the field value for each occur-
rence.

Multiple "B" symbols may be coded.

The following example will format a ten digit number (presumably a telephone
number) into a "### ### ####" layout:

05 Phone-Number PIC 9(3)B9(3)B9(4).

MOVE 5185551212 TO Phone-Number
DISPLAY Phone-Number

This code will display "518 555 1212".

Chapter 6 - DATA DIVISION 31 May 2018



GnuCOBOL 3.0 rcl [03May2018] Programmer’s Guide 189

llo"

n/n

The "0" (zero) editing symbol introduces one "0" character into the field value
for each occurrence in the picture string.

Multiple "0" symbols may be coded.

Here’s an example:

05 Output-Item PIC 909090909.

MOVE 12345 TO Output-Item
DISPLAY Output-Item

The above will display "102030405".

The "/" editing symbol inserts one "/" character into the field value for each
occurrence in the picture string.

Multiple "/" symbols may be coded.
This editing symbol is most-frequently used to format dates, as follows:
05 Year-Month-Day PIC 9(4)/9(2)/9(2).

MOVE 20140207 TO Year-Month-Day
DISPLAY Year-Month-Day

This example displays "2014/02/07".

11. The following are the numeric formatting symbols that may be specified in a picture string.
Each of these editing symbols will insert special characters into the field value to present
numbers in a "friendly" format. These editing symbols will each introduce one extra charac-
ter into the total field size for each occurrence of the symbol in the picture string. Numeric
fields whose picture clause contains these characters may neither be used as source fields
in any calculation nor may they serve as source fields for the transfer of data values to any
data item other than an alphanumeric field.

31 May 2018

The "." symbol inserts a decimal point into a numeric field value. When the
contents of a numeric data item sending field are moved into a receiving data
item whose picture clause contains the "." editing symbol, implied ("V") or
actual decimal point in the sending data item or literal, respectively, will be
aligned with the "." symbol in the receiving field. Digits are then transferred
from the sending to the receiving field outward from the sending field’s "V" or
""" truncating sending digits if there aren’t enough positions in the receiving
field. Any digit positions in the receiving field that don’t receive digits from
the sending field, if any, will be set to 0.

The "." symbol is not allowed in conjunction with "N".

An example will probably help:

05 Source-Field PIC 9(2)V9 VALUE 7.2.
05 Dest-Field PIC 9(5).9(2).

Chapter 6 - DATA DIVISION



190

12.

GnuCOBOL 3.0 rcl [03May2018] Programmer’s Guide
MOVE 1234567.89 TO Dest-Field
DISPLAY Dest-Field
MOVE 19 TO Dest-Field
DISPLAY Dest-Field
MOVE Source-Field TO Dest-Field
DISPLAY Dest-Field
The example will display three results — "34567.89", "00019.00" and
"00007.20"
Both data item definitions appear to have two decimal points in their picture
clauses. They actually don’t, because the last character of every data item
definition is always a period — the period that ends the definition.
mn The "," symbol serves as a thousands separator. Many times, you’ll see large
numbers formatted with these symbols — for example, 123,456,789. This can
be accomplished easily by adding thousands separator symbols to a picture
string. Thousands separator symbols that aren’t needed will behave as if they
were "9'"s.
The "," symbol is not allowed in conjunction with "N".
Here’s an example:
05 My-Lottery-Winnings PIC 9(3),9(3),9(3).
MOVE 12345 TO My-Lottery-Winnings
DISPLAY My-Lottery-Winnings
The value "0000012,345" (a very disappointing one for my retirement plans,
but a good thousands separator demo) will be displayed. Notice how, since the
first comma wasn’t needed due to the meagre amount I won, it behaved like
another "9".
If desired, you may reverse the roles of the "." and "," editing symbols by specifying

"DECIMAL POINT IS COMMA" in the "SPECIAL-NAMES" (see [SPECIAL-NAMESL page 90)
paragraph.

The following are insertion symbols. They are used to insert an extra character (two in the
case of "CR" and "DB") to signify the sign (positive or negative) of the numeric value that is
moved into the field whose picture string contains one of these symbols, or the fact that the
data item represents a currency (money) amount. Only one of the "+", "-" "CR" or "DB"
symbols may be used in a picture clause. In this context, when any of these symbols are
used in a <picture-string>, they must be at the end. The "+", "=" and/or currency symbols
may also be used as floating editing symbols at the beginning of the <picture-string> — a
subject that will be covered in the next numbered paragraph.

" If the value of the numeric value moved into the field is positive (0 or greater),
a "+" character will be inserted. If the value is negative (less than 0), a "-"
character is inserted.

The "+" symbol is not allowed in conjunction with "N".

Chapter 6 - DATA DIVISION 31 May 2018



GnuCOBOL 3.0 rcl [03May2018] Programmer’s Guide 191

IICRH

IIDB n

ll$ll

If the value of the numeric value moved into the field is positive (0 or greater),
a space will be inserted. If the value is negative (less than 0), a "-" character
is inserted.

The "-" symbol is not allowed in conjunction with "N".

This symbol is coded as the two characters "C" and "R". If the value of the
numeric value moved into the field is positive (0 or greater), two spaces will be
inserted. If the value is negative (less than 0), the characters "CR" (credit) are
inserted.

The "CR" symbol is not allowed in conjunction with "N".

This symbol is coded as the two characters "D" and "B". If the value of the
numeric value moved into the field is positive (0 or greater), two spaces will be
inserted. If the value is negative (less than 0), the characters "DB" (debit) are
inserted.

The "DB" symbol is not allowed in conjunction with "N".

Regardless of the value moved into the field, this symbol will insert the currency
symbol into the data item’s value in the position where it occurs in the <picture-
string> (see [SPECIAL-NAMES], page 90).

The "$" symbol is not allowed in conjunction with "N".

13. These editing symbols are known as floating replacement symbols. These symbols may
occur in sequences before any "9" editing symbols in the <picture-string> of a numeric data
item. Using these symbols transforms that numeric data item into a numerid edited data
item, which can no longer be used in calculations or subscripts.

14. Each of the following symbols behave like a "9", until such point as all digits in the numeric
value are exhausted and leading zeros are about to be inserted. In effect, these editing
symbols define what should happen to those leading zero.

||$n

ll*ll

nyn

31 May 2018

Of those currency symbols that correspond to character positions in which
leading zeros reside, the right-most will have its "0" value replaced by the
currency symbol in-effect for the program (see [SPECIAL-NAMES], page 90).
Any remaining leading zero values occupying positions described by this symbol
will be replaced by spaces.

The "$" symbol is not allowed in conjunction with "N".

Any currency symbol coded to the right of a "." will be treated exactly like a
ll9ll.

This symbol is referred to as a check protection symbol. All check-protection
symbols that correspond to character positions in which leading zeros reside
will have their "0" values replaced by "*".

The "*" symbol is not allowed in conjunction with "N".

Any check-suppression symbol coded to the right of a " . " will be treated exactly
like a "9".

Of those "+" symbols that correspond to character positions in which leading
zeros reside, the right-most will have its "0" value replaced by a "+" if the value

Chapter 6 - DATA DIVISION



192

GnuCOBOL 3.0 rcl [03May2018] Programmer’s Guide

in the data item is zero or greater or a "-" otherwise. Any remaining leading
zero values occupying positions described by this symbol will be replaced by
spaces. You cannot use both "+" and "-" in the same <picture-string>.

The "+" symbol is not allowed in conjunction with "N".
Any "+" symbol coded to the right of a "." will be treated exactly like a "9".

n-n Of those "-" symbols that correspond to character positions in which leading
zeros reside, the right-most will have its "0" value replaced by a space if the
value in the data item is zero or greater or a "-" otherwise. Any remaining
leading zero values occupying positions described by this symbol will be replaced
by spaces. You cannot use both "+" and "-" in the same <picture-string>.

The "-" symbol is not allowed in conjunction with "N".
Any "-" symbol coded to the right of a "." will be treated exactly like a "9".

VA All "Z" symbols that correspond to character positions in which leading zeros
reside will have their "0" values replaced by spaces.

Any zero-suppression symbol coded to the right of a "." will be treated exactly
like a "9".

"Z" and "*" should not be coded in the same <picture-string>

"+" and "-" should not be coded in the same <picture-string>

When multiple floating symbols are coded, even if there is only one of them used they will all
be considered floating and will all be able to assume each other’s properties. For example, if
a data item has a "PIC +$ZZZZ9.99" <picture-string>, and a value of 1 is moved to that field
at run-time, the resulting value will be (the b symbol represents a space) "bbbb+$1.00".
This is not consistent with many other COBOL implementations, where the result would
have been "+$bbbb1.00".

Most other COBOL implementations reject the use of multiple occurrences of multi-
ple floating editing symbols. For example, they would reject <picture-string>s such as
"+++$$$9.99" ) "$$$2279.99" and so on. GnuCOBOL accepts these. Programmers cre-
ating GnuCOBOL programs should avoid such <picture-string>s if there is any likelihood
that those programs may be used with other COBOL implementations.

Chapter 6 - DATA DIVISION 31 May 2018



GnuCOBOL 3.0 rcl [03May2018] Programmer’s Guide 193

6.9.34. PRESENT WHEN

[ PRESENT-WHEN Clause Syntax

PRESENT WHEN condition-name

This syntax is valid in the following sections:
REPORT

This clause names an existing "Condition Name" (see [Condition Names], page 45) that will
serve as a switch controlling the presentation or suppression of a report group.

1. If the specified condition-name has a value of FALSE when a "GENERATE" statement (see
[GENERATE], page 296) causes a report group to be presented, the presentation of that
group will be suppressed.

2. If the condition-name has a value of TRUE, the group will be presented.

3. See [Condition Names], page 45, for more information.

31 May 2018 Chapter 6 - DATA DIVISION



194 GnuCOBOL 3.0 rcl [03May2018] Programmer’s Guide

6.9.35. PROMPT

[ PROMPT Clause Syntax

PROMPT [ CHARACTER IS literal-1 | identifier-1 ]

This syntax is valid in the following sections:
SCREEN

This clause defines the character that will be used as the fill-character for any input fields on
the screen.

1. The reserved word "IS" is optional and may be included, or not, at the discretion of the
programmer. The presence or absence of this word has no effect upon the program.

2. The default prompt character, should no "CHARACTER" specification be coded, or should the
"PROMPT" clause be absent altogether, is an underscore ("_").

3. Prompt characters will be automatically transformed into spaces upon input.

See [Color Palette and Video Attributes|, page 21, for more information on screen colors and
video attributes.

Chapter 6 - DATA DIVISION 31 May 2018



GnuCOBOL 3.0 rcl [03May2018] Programmer’s Guide 195

6.9.36. PROTECTED

:

PROTECTED Attribute Syntax

PROTECTED SIZE IS { identifier }

{ integer }

This syntax is valid in the following sections:
SCREEN

The "PROTECTED" extended clause will effect the specified field to be limited in size, regard-
less of the picture size. OR DOES IT?

. The SIZE phrase specifies the size (length) of the field. After the ACCEPT or DISPLAY is

finished, the cursor is placed immediately after the field defined by this clause, unless this
would place the cursor outside of the current terminal window. In this case, the cursor is
wrapped around to the beginning of the next line (scrolling the window if necessary).

If the SIZE phrase is not used, then the field length defaults to the size of the item being
accepted or displayed. If the CONVERT phrase is used, however, then the size of the field
depends on the data type of the item and the verb being used.

A. If the DISPLAY verb is executing, then the size is the same as if the CONVERT phrase
were not specified except for numeric items. For numeric items, the size is the number
of digits in the item, plus one if it is not an integer, plus one if it is signed. The
remaining cases cover the size when an ACCEPT statement is used.

B. If the item is numeric or numeric edited, then the size is the number of digits in the
item, plus one if it is not an integer, plus one if it is signed.

C. If the item is alphanumeric edited, then the size is set to the number of "A" or "X"
positions specified in its PICTURE clause.

D. For all other data types, the field size is set to the size of the item (same as if CONVERT
were not specified).

Note that the OUTPUT phrase changes the way in which the default field size is computed.
See that heading above for details. Also note that the OUTPUT phrase affects only the
way items are displayed on the screen; the internal format of accepted data is not affected.

Note that you cannot supply the CONVERT phrase in the Screen Section. Thus the size
of a Screen Section field is always the size of its screen entry unless the SIZE phrase is
specified.

31 May 2018 Chapter 6 - DATA DIVISION



196

GnuCOBOL 3.0 rcl [03May2018] Programmer’s Guide

6.9.37. REDEFINES

:

REDEFINES Clause Syntax

REDEFINES identifier-1

This syntax is valid in the following sections:
FILE, WORKING-STORAGE, LOCAL-STORAGE, LINKAGE

The "REDEFINES" clause causes the data item in who’s definition the "REDEFINES" clause is
specified (hereafter referred to as the redefines object) to occupy the same physical storage
space as <identifier-1> (hereafter referred to as the redefines subject).

1. The following rules must all be followed in order to use REDEFINES:

A.
B.
C.

The level number of both the subject and object data items must be the same.
The level numbers of both the subject and object data items cannot be 66, 78 or 88.

If "n" represents the level number of the object, then no other data items with level
number "n" may be defined between the subject and object data items unless they too
are "REDEFINES" of the subject.

If "n" represents the level number of the object, then no other data items with a level
number numerically less than "n" may be defined between the subject and object data
items.

The total allocated size of the subject data item must be the same as the total allocated
size of the object data item.

No "OCCURS" (see [OCCURS], page 182) clause may be part of the definition of either
the subject or object data items. Either or both, however, may be group items that
contain data items with "OCCURS" clauses.

No "VALUE" (see [VALUE], page 220) clause may be defined on the object data item,
and no data items subordinate to the object data item may have "VALUE" clauses, with
the exception of level-88 condition names.

Chapter 6 - DATA DIVISION 31 May 2018



GnuCOBOL 3.0 rcl [03May2018] Programmer’s Guide 197

6.9.38. RENAMES

[ RENAMES Clause Syntax

RENAMES identifier-1 [ THRU|THROUGH identifier-2

This syntax is valid in the following sections:
FILE, WORKING-STORAGE, LOCAL-STORAGE, LINKAGE

The "RENAMES" clause regroups previously defined items by specifying alternative, possibly over-
lapping, groupings of elementary data items.

1. The reserved words "THRU" and "THROUGH" are interchangeable.

2. You must use the level number 66 for data description entries that contain the "RENAMES"
clause.

3. The <identifier-1> and <identifier-2> data items, along with all data items defined between
those two data items in the program source, must all be contained within the same 01-level
record description.

4. See [66-Level Data Items], page 145, for additional information on the RENAMES clause.

31 May 2018 Chapter 6 - DATA DIVISION



198 GnuCOBOL 3.0 rcl [03May2018] Programmer’s Guide

6.9.39. REQUIRED

[ REQUIRED Attribute Syntax

REQUIRED

This syntax is valid in the following sections:
SCREEN

This clause forces the user to enter data into the field it is specified on (or into all subordinate
input-capable fields if "REQUIRED" is specified on a group item).

1. The "EMPTY-CHECK" (see [EMPTY-CHECK], page 163) and "REQUIRED" clauses are inter-
changeable, and may not be used together in the same data item description.

2. In order to take effect, the user must first move the cursor into the field having this clause
in its definition.

3. The "ACCEPT screen-data-item" statement (see [ACCEPT screen-data-item], page 246)
will ignore the Enter key and any other cursor-moving keystrokes that would cause the
cursor to move to another screen item unless data has been entered into the field. Function
keys will still be allowed to terminate the "ACCEPT".

4. In order to be functional, this attribute must be supported by the underlying ’curses’
package your GnuCOBOL implementation was built with. As of this time, the 'PDCurses’
package (used for native Windows or MinGW builds) does not support "REQUIRED".

Chapter 6 - DATA DIVISION 31 May 2018



GnuCOBOL 3.0 rcl [03May2018] Programmer’s Guide 199

6.9.40. REVERSE-VIDEO

[ REVERSE-VIDEO Attribute Syntax

REVERSE-VIDEO

This syntax is valid in the following sections:
SCREEN

The "REVERSE-VIDEQ" attribute swaps the specified or implied "FOREGROUND-COLOR" (see
[FOREGROUND-COLOR]|, page 167) and "BACKGROUND-COLOR" (see [BACKGROUND-
COLOR], page 153) attributes for the field whose definition contains this clause (or all
subordinate fields if used on a group item).

See [Color Palette and Video Attributes]|, page 21, for more information on screen colors and
video attributes.

31 May 2018 Chapter 6 - DATA DIVISION



200 GnuCOBOL 3.0 rcl [03May2018] Programmer’s Guide

6.9.41. SECURE

[ SECURE Attribute Syntax

SECURE

This syntax is valid in the following sections:
SCREEN

This clause will cause all data entered into the field to appear on the screen as asterisks.

1. The "NO-ECHQO" (see [NO-ECHO)], page 181) and "SECURE" clauses are interchangeable, and
may not be used together in the same data item description.

2. This clause may only be used on a field allowing data entry (a field containing either the
"USING" (see [USING], page 219) or "T0" (see [TO], page 207) clause).

See [Color Palette and Video Attributes|, page 21, for more information on screen colors and
video attributes.

Chapter 6 - DATA DIVISION 31 May 2018



GnuCOBOL 3.0 rcl [03May2018] Programmer’s Guide 201

6.9.42. SIGN IS

:

SIGN-IS Clause Syntax

SIGN IS LEADING|TRAILING [ SEPARATE CHARACTER ]

This syntax is valid in the following sections:
FILE, WORKING-STORAGE, LOCAL-STORAGE, LINKAGE, REPORT, SCREEN

This clause, allowable only for "USAGE DISPLAY" numeric data items, specifies how an "S"
symbol will be interpreted in a data item’s picture clause.

1.

The reserved words "CHARACTER" and "IS" are optional and may be included, or not, at
the discretion of the programmer. The presence or absence of these words has no effect
upon the program.

Without the "SEPARATE CHARACTER" option, the sign of the data item’s value will be en-
coded by transforming the last ("TRAILING") or first ("LEADING") digit as follows:

First/Last Digit Value For Positive Value for Negative

© 00 O Ui Wi+~ O
© 00 O Ui Wi~ O
Mg < g w0y

<

If the "SEPARATE CHARACTER" clause is used, then an actual "+" or "-" character will be
inserted into the field’s value as the first ("LEADING") or last ("TRAILING") character. Note
that having this character embedded within the data item’s storage does not prevent the
data item from being used as a source field in arithmetic operations.

When "SEPARATE CHARACTER" is specified, the "S" symbol in the data item’s "PICTURE"
must be counted when determining the data item’s size.

Neither the presence of an encoded digit (see above) nor an actual "+" or "-" character
embedded within the data item’s storage prevents the data item from being used as a source
field in arithmetic operations.

31 May 2018 Chapter 6 - DATA DIVISION



202

GnuCOBOL 3.0 rcl [03May2018] Programmer’s Guide

6.9.43. SOURCE

:

SOURCE Clause Syntax

SOURCE IS literal-1 | identifier-1 [ ROUNDED ]

This syntax is valid in the following sections:
REPORT

This clause logically attaches a report section data item to another data item defined elsewhere
in the data division.

1.

The reserved word "IS" is optional and may be included, or not, at the discretion of the
programmer. The presence or absence of this word has no effect upon the program.

When the report group containing this clause is presented, the value of the specified numeric
literal or identifier will be automatically moved to the report data item prior to presentation.

The specified identifier may be defined anywhere in the data division, but if it is defined
in the report section it may only be "PAGE-COUNTER", "LINE-COUNTER" or a "SUM" (see
[SUM], page 472) counter.

The "PICTURE" (see [PICTURE], page 186) of the report data item must be such that it
would be legal to "MOVE" (see [MOVE], page 316) the specified literal or identifier to a data
item with that "PICTURE".

The "ROUNDED" option comes into play should the number of digits to the right of an actual
or assumed decimal point be different between the specified literal or identifier value (the
"source value") and the "PICTURE" specified for the field in whose definition the "SOURCE"
clause appears (the "target field"). Without "ROUNDED", excess digits in the source value
will simply be truncated to fit the target field. With "ROUNDED", the source value will be
arithmetically rounded to fit the target field. See [ROUNDED)], page 237, for information
on the "NEAREST-AWAY-FROM-ZERO" rounding rule, which is the one that will apply.

Chapter 6 - DATA DIVISION 31 May 2018



GnuCOBOL 3.0 rcl [03May2018] Programmer’s Guide 203

6.9.44. SUM OF

[ SUM-OF Clause Syntax }
SUM OF { identifier-7 }... [ { RESET ON FINAL|identifier-8 } ]
~~~  { literal-2  } { e s }
{ UPON identifier-9 }

This syntax is valid in the following sections:
REPORT

The "SUM" clause establishes a summation counter whose value will be arithmetically calculated
whenever the field is presented.

1.

9.

The reserved words "OF" and "ON" are optional and may be included, or not, at the dis-
cretion of the programmer. The presence or absence of these words has no effect upon the
program.

The "SUM" clause may only appear in a "CONTROL FOOTING" report group.

If the data item in which the "SUM" clause appears has been assigned it’s own identifier
name, and that name is not "FILLER", then that data item is referred to as a sum counter.

All <identifier-7> data items must be non-edited numeric in nature.
If any <identifier-7> data item is defined in the report section, it must be a sum counter.

Any <identifier-7> data items that are sum counters must either be defined in the same
report group as the data item in which this "SUM" clause appears or they must be defined
in a report data item that exists at a lower level in this report’s control hierarchy. See
[Control Hierarchy]|, page 561, for additional information.

The "PICTURE" of the report data item in who’s description this "SUM" clause appears
in must be such that it would be legal to "MOVE" (see [MOVE], page 316) the specified
<identifier-7> or <literal-2> value to a data item with that "PICTURE".

The following points apply to the "UPON" option:

A. The data item <identifier-9> must be the name of a detail group specified in the same
report as the control footing group in which this "SUM" clause appears.

B. The presence of an "UPON" clause limits the "SUM" clause to adding the specified numeric
literal or identifier value into the sum counter only when a "GENERATE <identifier-
9>" statement is executed.

C. If there is no "UPON" clause specified, the value of <identifier-7> or <literal-2> will be
added into the sum counter whenever a "GENERATE" (see [GENERATE], page 296) of
any detail report group in the report is executed.

D. If there is only a single detail group in the report’s definition, the "UPON" clause is
meaningless.

The following points apply to the "RESET" option:

A. If the "RESET" option is coded, "FINAL" or <identifier-8> (whichever is coded on the

31 May 2018 Chapter 6 - DATA DIVISION

204 GnuCOBOL 3.0 rcl [03May2018] Programmer’s Guide

"RESET") must be one of the report’s control breaks specified on the "CONTROLS" clause.

B. If there is no "RESET" option coded, the sum counter will be reset back to zero after
each time the control footing containing the "SUM" clause is presented. This is the
typical behaviour that would be expected.

C. If, however, you want to reset the "SUM" counter only when the control footing for a
control break higher in the control hierarchy is presented, specify that higher control
break on the "RESET" option.

Chapter 6 - DATA DIVISION 31 May 2018

GnuCOBOL 3.0 rcl [03May2018] Programmer’s Guide 205

6.9.45. SYNCRONIZED

[

SYNCRONIZED Syntax

SYNCRONIZED|SYNCHRONISED [LEFT|RIGHT]

The "LEFT" and "RIGHT" (SYNCRONIZED) clauses are syntactically recognized but are other-
wise non-functional.

This syntax is valid in the following sections:
FILE, WORKING-STORAGE, LOCAL-STORAGE, LINKAGE

This optional clause optimizes the storage of binary numeric items to store them in such a
manner as to make it as fast as possible for the CPU to fetch them.

1. The reserved words "SYNCRONIZED" and "SYNCHRONISED" are interchangeable, and may be
abbreviated as "SYNC".

2. If the "SYNCRONIZED" clause is coded on anything but a numeric data item with a "USAGE"
(see [USAGE], page 210) that specifies storage of data in a binary form, the "SYNCRONIZED"
clause will be ignored.

3. Synchronization is performed (by the compiler) as follows:

A.
B.

If the binary item occupies one byte of storage, no synchronization is performed.

If the binary item occupies two bytes of storage, the binary item is allocated at the
next half-word boundary.

If the binary item occupies four bytes of storage, the binary item is allocated at the
next word boundary.

If the binary item occupies four bytes of storage, the binary item is allocated at the
next word boundary.

The following illustrates the allocation of a group of data items both without and with the
"SYNCRONIZED" option. The grey blocks represent the unused bytes that are allocated in the
Group-Item-2 structure because of the "SYNC" clauses.

31 May 2018 Chapter 6 - DATA DIVISION

206 GnuCOBOL 3.0 rcl [03May2018] Programmer’s Guide

81 Group-Item-1. 81 Group-Item-2.
85 A PIC X(1). 85 A PIC X(1).
85 B USAGE BINARY-SHORT. 85 B SYNC USAGE BINARY-SHORT.
85 C PIC X(2). 85 C PIC X(2).
es5 D USAGE BINARY-LONG. es5 D SYNC USAGE BINARY-LONG.
85 E PIC X(3). 85 E PIC X(3).
85 F USAGE BINARY-DOUBLE. 85 F SYNC USAGE BINARY-DOUBLE.
Y ¥ Y Y Y Y
Word Word Word Word Word Word Word Word Word Word Word Word Word
Group-ltem-1 |A| B | C | D | E F
Group-ltem-2 | A B C D E F
Bytes Bytes Bytes
Double Double Double Double
Word Word Word Word

Chapter 6 - DATA DIVISION 31 May 2018

GnuCOBOL 3.0 rcl [03May2018] Programmer’s Guide 207

6.9.46. TO

[TO Clause Syntax

TO identifier-5

This syntax is valid in the following sections:
SCREEN

This clause logically attaches a screen section data item to another data item defined elsewhere
in the data division.

1. The "TO" clause is used to define a data-entry field with no initial value; when a value is
entered, it will be saved to the specified identifier.

2. The "FROM" (see [FROM], page 168), "T0", "USING" (see [USING], page 219) and "VALUE"
(see [VALUE], page 220) clauses are mutually-exclusive in any screen section data item’s
definition.

31 May 2018 Chapter 6 - DATA DIVISION

208 GnuCOBOL 3.0 rcl [03May2018] Programmer’s Guide

6.9.47. TYPE

[TYPE Clause Syntax }

[TYPE IS

| —

P e T N W= U S,

B
o
=
<
[z
—
=
H
=
s A el s s aTE S LS RS SV AR

{ RF|{REPORT FOOTING}

This syntax is valid in the following sections:
REPORT

This clause defines the type of report group that is being defined for a report.

1. This clause is required on any 01-level data item definitions (other than 01-level constants)
in the report section. This clause is invalid on any other report section data item definitions.

2. There may be a maximum of one (1) report group per "RD" defined with a "TYPE" of
"REPORT HEADING", "PAGE HEADING", "PAGE FOOTING" and "REPORT FOOTING".

3. There must be either a "CONTROL HEADING" or a "CONTROL FOOTING" or both specified for
each entry specified on the "CONTROLS ARE" clause of the "RD".

4. The various report groups that constitute a report may be defined in any order.

5. See [RWCS Lexicon], page 557, for a description of the seven different types of report groups.

Chapter 6 - DATA DIVISION 31 May 2018

GnuCOBOL 3.0 rcl [03May2018] Programmer’s Guide 209

6.9.48. UNDERLINE

[UNDERLINE Attribute Syntax }

UNDERLINE

This syntax is valid in the following sections:
SCREEN

The "UNDERLINE" clause will introduce a horizontal line at the bottom edge of a screen field.

1. The "LEFTLINE" (see [LEFTLINE], page 175), "OVERLINE" (see [OVERLINE], page 185)
and "UNDERLINE" clauses may be used in any combination in a single field’s description.

2. This clause is essentially non-functional when used within Windows command shell
(cmd.exe) environments and running programs compiled using a GnuCOBOL implementa-
tion built using 'PDCurses’ (such as Windows/MinGW builds).

3. Whether or not this clause operates on Cygwin or UNIX/Linux/OSX systems will depend
upon the video attribute capabilities of the terminal output drivers and ’curses’ software
being used.

See [Color Palette and Video Attributes]|, page 21, for more information on screen colors and

video attributes.

31 May 2018 Chapter 6 - DATA DIVISION

210 GnuCOBOL 3.0 rcl [03May2018] Programmer’s Guide

6.9.49. USAGE

[USAGE Clause Syntax }

USAGE IS data-item-usage

This syntax is valid in the following sections:

FILE, WORKING-STORAGE, LOCAL-STORAGE, LINKAGE, REPORT
The "USAGE" clause defines the format that will be used to store the value of a data item.

1. The reserved word "IS" is optional and may be included, or not, at the discretion of the
programmer. The presence or absence of this word has no effect upon the program.

2. The following table summarizes the various USAGE specifications available in GnuCOBOL.

BINARY
Range of Values: Defined by the quantity of "9"s and the presence
or absence of an "S" in the "PICTURE"
Storage Format: Compatible Binary Integer
Negative Values Allowed?: If "PICTURE" contains "S"
"PICTURE" Used?: Yes

BINARY-C-LONG [SIGNED]

Same as "BINARY-DOUBLE SIGNED"

BINARY-C-LONG UNSIGNED

Range of Values: Typically 0 to 4,294,967,295
Storage Format: Native Binary Integer
Negative Values Allowed?: No

"PICTURE" Used?: No

BINARY-CHAR [SIGNED]

Range of Values: -128 to 127

Chapter 6 - DATA DIVISION 31 May 2018

GnuCOBOL 3.0 rcl [03May2018] Programmer’s Guide

Storage Format:

Negative Values Allowed?:

"PICTURE" Used?:

BINARY-CHAR UNSIGNED

Range of Values:

Storage Format:

Negative Values Allowed?:

"PICTURE" Used?:

BINARY-DOUBLE [SIGNED]

Range of Values:

Storage Format:

Negative Values Allowed?:

"PICTURE" Used?:

BINARY-DOUBLE UNSIGNED

Range of Values:

Storage Format:

Negative Values Allowed?:

"PICTURE" Used?:

BINARY-INT

Same as "BINARY-LONG SIGNED"

BINARY-LONG [SIGNED]

31 May 2018

Native Binary Integer
Yes

No

0 to 255
Native Binary Integer
No

No

-9,223,372,036,854,775,808
9,223,372,036,854,775,807

Native Binary Integer
Yes

No

0 to 18,446,744,073,709,551,615
Native Binary Integer
No

No

211

Chapter 6 - DATA DIVISION

to

212 GnuCOBOL 3.0 rcl [03May2018] Programmer’s Guide

Range of Values: -2,147,483,648 2,147,483,647
Storage Format: Native Binary Integer
Negative Values Allowed?: Yes

"PICTURE" Used?: No

BINARY-LONG UNSIGNED

Range of Values: 0 to 4,294,967,295
Storage Format: Native Binary Integer
Negative Values Allowed?: No

"PICTURE" Used?: No

BINARY-LONG-LONG

Same as "BINARY-DOUBLE SIGNED"

BINARY-SHORT [SIGNED]

Range of Values: -32,768 to 32,767
Storage Format: Native Binary Integer
Negative Values Allowed?: Yes

"PICTURE" Used?: No

BINARY-SHORT UNSIGNED

Range of Values: 0 to 65,535
Storage Format: Native Binary Integer
Negative Values Allowed?: No
"PICTURE" Used?: No
COMPUTATIONAL

Chapter 6 - DATA DIVISION 31 May 2018

GnuCOBOL 3.0 rcl [03May2018] Programmer’s Guide 213

Same as "BINARY"

COMP [UTATIONAL]-1

Same as "FLOAT-SHORT"

COMP [UTATIONAL]-2

Same as "FLOAT-LONG"

COMP [UTATIONAL]-3

Same as "PACKED-DECIMAL"

COMP [UTATIONAL] -4

Same as "BINARY"

COMP [UTATIONAL]-5

Range of Values:

Storage Format:

Negative Values Allowed?:

"PICTURE" Used?:

COMP [UTATIONAL]-6

Range of Values:

Storage Format:

Negative Values Allowed?:

"PICTURE" Used?

COMP [UTATIONAL]-X

31 May 2018

Depends on number of "9"s in the "PICTURE" and
the "binary-size" setting of the configuration file
used to compile the program

Native Binary Integer

If "PICTURE" contains "S"

Yes

Defined by the quantity of "9"s and the presence
or absence of an "S" in the "PICTURE"

Unsigned Packed Decimal
No

Yes

Chapter 6 - DATA DIVISION

214

Range of Values:

Storage Format:

Negative Values Allowed?:

"PICTURE" Used?:

DISPLAY

Range of Values:

Storage Format:

Negative Values Allowed?:

"PICTURE" Used?:

FLOAT-DECIMAL-16

Range of Values:

Storage Format:

Negative Values Allowed?:

"PICTURE" Used?:

FLOAT-DECIMAL-34

Range of Values:

Storage Format:

Negative Values Allowed?:

"PICTURE" Used?:

Chapter 6 - DATA DIVISION

GnuCOBOL 3.0 rcl [03May2018] Programmer’s Guide

If used with "PIC X", allocates one byte of storage
per "X"; range of values is 0 to max storable in that
many bytes. If used with "PIC 9", range of values
depends on number of "9"s in PICTURE

Native unsigned (X) or signed (9) Binary

If "PICTURE" 9 and contains "S"

Yes

Depends on "PICTURE" One character per X, A,
9, period, $, Z, 0, *, S (if "SEPARATE CHARACTER"
specified), +, - or B symbol in "PICTURE"; Add 2
more bytes if the "DB" or "CR" editing symbol is
used

Characters

If "PICTURE" contains "S"

Yes

9.99999999999999910~ 384 to
9.99999999999999910~384

Native IEEE 754 Decimal64 Floating-point
Yes

No

-9.99999...1076144 to 9.99999...10"6144
Native IEEE 754 Decimall28 Floating-point
Yes

No

31 May 2018

GnuCOBOL 3.0 rcl [03May2018] Programmer’s Guide 215

FLOAT-LONG
Range of Values: Approximately -1.79769313486231610~308 to
1.79769313486231610~308
Storage Format: Native IEEE 754 Binary64 Floating-point
Negative Values Allowed?: Yes
"PICTURE" Used?: No

FLOAT-SHORT

Range of Values: Approximately -3.402823510738 to
3.402823510738
Storage Format: Native IEEE 754 Binary32
Negative Values Allowed?: Yes
"PICTURE" Used?: No
INDEX
Range of Values: 0 to maximum address possible (32 or 64 bits)
Storage Format: Native Binary Integer
Negative Values Allowed?: No
"PICTURE" Used?: No
NATIONAL

"USAGE NATIONAL", while syntactically recognized, is not supported by GnuCOBOL

PACKED-DECIMAL

Range of Values: Defined by the quantity of "9"s and the presence
or absence of an "S" in the PICTURE

Storage Format: Signed Packed Decimal

31 May 2018 Chapter 6 - DATA DIVISION

216 GnuCOBOL 3.0 rcl [03May2018] Programmer’s Guide

Negative Values Allowed?:

"PICTURE" Used?:

POINTER

Range of Values:
Storage Format:
Negative Values Allowed?:

"PICTURE" Used?

PROCEDURE-POINTER

Same as "PROGRAM-POINTER"

PROGRAM-POINTER

Range of Values:
Storage Format:
Negative Values Allowed?:

"PICTURE" Used?:

SIGNED-INT

Same as "BINARY-LONG SIGNED"

SIGNED-LONG

Same as "BINARY-DOUBLE SIGNED"

SIGNED-SHORT

Same as "BINARY-SHORT SIGNED"

UNSIGNED-INT

Chapter 6 - DATA DIVISION

If "PICTURE" contains "S"

No

0 to maximum address possible (32 or 64 bits)
Native Binary Integer
No

No

0 to maximum address possible (32 or 64 bits)
Native Binary Integer
No

No

31 May 2018

GnuCOBOL 3.0 rcl [03May2018] Programmer’s Guide 217

Same as "BINARY-LONG UNSIGNED"

UNSIGNED-LONG

Same as "BINARY-DOUBLE UNSIGNED"

UNSIGNED-SHORT

Same as "BINARY-SHORT UNSIGNED"

3. Binary data (integer or floating-point) can be stored in either a Big-Endian or Little-Endian
form.

Big-endian data allocation calls for the bytes that comprise a binary item to be allocated
such that the least-significant byte is the right-most byte. For example, a four-byte binary
item having a value of decimal 20 would be big-endian allocated as 00000014 (shown in
hexadecimal notation).

Little-endian data allocation calls for the bytes that comprise a binary item to be allocated
such that the least-significant byte is the left-most byte. For example, a four-byte binary
item having a value of decimal 20 would be little-endian allocated as 14000000 (shown in
hexadecimal notation).

All CPUs are capable of "understanding" big-endian format, which makes it the
"most-compatible" form of binary storage across computer systems.

Some CPUs such as the Intel/AMD i386/x64 architecture processors used in most Windows
PCs prefer to process binary data stored in a little-endian format. Since that format is
more efficient on those systems, it is referred to as the "native" binary format.

On a system supporting only one format of binary storage (generally, that would be big-
endian), the terms 'most-efficient’ and 'native format’ are synonymous.

4. Data items that have the "UNSIGNED" attribute explicitly coded, or "DISPLAY",
"PACKED-DECIMAL", "COMP-5", "COMP-X" items that do not have an "S" symbol in their
picture clause cannot preserve negative values that may be stored into them. Storing a
negative value into such a field will actually result in the sign being stripped, essentially
saving the absolute value in the data item.

5. Packed-decimal (i.e. "USAGE PACKED-DECIMAL", "USAGE COMP-3" or "USAGE COMP—G")
data is stored as a series of bytes such that each byte contains two 4-bit fields, referred
to as 'nibbles’ (since they comprise half a "byte", they’re just "nibbles" — don’t groan, I
don’t just make this stuff up!). Each nibble represents a "9" in the "PICTURE" and each
holds a single decimal digit encoded as its binary value (0 = 0000, 1 = 0001, ... , 9 =
1001).

The last byte of a "PACKED-DECIMAL" or "COMP-3" data item will always have its left
nibble corresponding to the last "9" in the "PICTURE" and its right nibble reserved as
a sign indicator. This sign indicator is always present regardless of whether or not the
"PICTURE" included an "S" symbol.

31 May 2018 Chapter 6 - DATA DIVISION

218

10.

GnuCOBOL 3.0 rcl [03May2018] Programmer’s Guide

The first byte of the data item will contain an unused left nibble if the "PICTURE" had an
even number of "9" symbols in it.

The sign indicator will have a value of a hexadecimal A through F. Traditional packed
decimal encoding rules call for hexadecimal values of F, A, C or E ("FACE") in the sign
nibble to indicate a positive value and B or D to represent a negative value (hexadecimal
digits 0-9 are undefined). Testing with a Windows MinGW /GnuCOBOL implementation
shows that — in fact — hex digit D represents a negative number and any other hexadecimal
digit denotes a positive number. Therefore, a "PIC S9(3) COMP-3" packed-decimal field
with a value of -15 would be stored internally as a hexadecimal 015D in GnuCOBOL.

If you attempt to store a negative number into a packed decimal field that has no "S" in
its "PICTURE", the absolute value of the negative number will actually be stored.

"USAGE COMP-6" does not allow for negative values, therefore no sign nibble will be al-
located. A "USAGE COMP-6" data item containing an odd number of "9" symbols in its
"PICTURE" will leave its leftmost nibble unused.

The "USAGE" specifications "FLOAT-DECIMAL-16" and "FLOAT-DECIMAL-34" will encode
data using IEEE 754 "Decimal64" and "Decimall28" format, respectively. The former
allows for up to 16 digits of exact precision while the latter offers 34. The phrase "ex-
act precision" is used because the traditional binary renderings of decimal real numbers
in a floating-point format ("FLOAT-LONG" and "FLOAT-SHORT", for example) only yield an
approximation of the actual value because many decimal fractions cannot be precisely ren-
dered in binary. The Decimal64 and Decimall28 renderings, however, render decimal real
numbers in encoded decimal form in much the same way that "PACKED-DECIMAL" renders
a decimal integer in digit-by-digit decimal form. The exact manner in which this rendering
is performed is complex (Wikipedia has an excellent article on the subject just search for
"Decimal64").

GnuCOBOL stores "FLOAT-DECIMAL-16" and "FLOAT-DECIMAL-34" data items using either
Big-Endian or Little-Endian form, whichever is native to the system.

The "USAGE" specifications "FLOAT-LONG" and "FLOAT-SHORT" use the IEEE 754
"Binary64" and "Binary32" formats, respectively. These are binary encodings of real
decimal numbers, and as such cannot represent every possible value between the minimum
and maximum values in the range for those usages. Wikipedia has an excellent article on
the Binary64 and Binary32 encoding schemes just search on "Binary32" or "Binary64".

GnuCOBOL stores "FLOAT-LONG" and "FLOAT-SHORT" data items using either Big-Endian
or Little-Endian form, whichever is native to the system.

A "USAGE" clause specified at the group item level will apply that "USAGE" to all subordinate
data items, except those that themselves have a "USAGE" clause.

The only "USAGE" that is allowed in the report section is "USAGE DISPLAY".

Chapter 6 - DATA DIVISION 31 May 2018

GnuCOBOL 3.0 rcl [03May2018] Programmer’s Guide 219

6.9.50. USING

[USING Clause Syntax }

USING identifier-1

This syntax is valid in the following sections:
SCREEN

This clause logically attaches a screen section data item to another data item defined elsewhere
in the data division.

1. When the screen item whose definition this clause is part of is displayed, the value currently
in <identifier-1> will be automatically moved into the screen item first.

2. When the screen item whose definition this clause is part of (or its parent) is accepted, the
current contents of the screen item will be saved back to <identifier-1> at the conclusion of
the "ACCEPT".

3. The "FROM" (see [FROM], page 168), "T0" (see [TO], page 207), "USING" and "VALUE"
(see [VALUE], page 220) clauses are mutually-exclusive in any screen section data item’s
definition.

31 May 2018 Chapter 6 - DATA DIVISION

220

GnuCOBOL 3.0 rcl [03May2018] Programmer’s Guide

6.9.51. VALUE

:

VALUE (Condition Names) Clause Syntax

{ VALUE IS } {literal-1 [THRU|THROUGH literal-2]}...

~ Y e s

VALUE (Other Data Items) Syntax

VALUE IS [ALL] literal-1

This syntax is valid in the following sections:

FILE, WORKING-STORAGE, LOCAL-STORAGE, LINKAGE, REPORT, SCREEN

The "VALUE" clause is used to define condition names or to assign values (at compilation time)
to data items.

1. The reserved words "ARE" and "IS" are optional and may be included, or not, at the
discretion of the programmer. The presence or absence of these words has no effect upon
the program.

2. This clause cannot be specified on the same data item as a "FROM" (see [FROM], page 168),
"TQ" (see [TO], page 207) or "USING" (see [USING], page 219) clause.

3. The following points apply to using the "VALUE" clause in the definition of a condition

name:
A. The clauses "VALUE IS" and "VALUES ARE" are interchangeable.
B. The reserved words "THRU" and "THROUGH" are interchangeable.
C. See [88-Level Data Items], page 148, for a discussion of how this format of "VALUE" is

used to create condition names.

D. See [Condition Names], page 45, for a discussion of how condition names are used.

4. The following points apply to using the "VALUE" clause in the definition of any other data
item:
A. In this context, "VALUE" specifies an initial compilation-time value that will be assigned

to the storage occupied by the data item in the program object code generated by the
compiler.

The "VALUE" clause is ignored on "EXTERNAL" (see [EXTERNAL], page 165) data items
or on any data items defines as subordinate to an "EXTERNAL" data item.

This format of the "VALUE" clause may not be used anywhere in the description of an
01 item (or any of it’s subordinate items) serving as an "FD" or "SD" record description.

Chapter 6 - DATA DIVISION 31 May 2018

GnuCOBOL 3.0 rcl [03May2018] Programmer’s Guide 221

D. If the optional "ALL" clause is used, it may only be used with an alphanumeric literal
value; the value will be repeated as needed to completely fill the data item. Here are
some examples with and without "ALL" (the symbol b denotes a space):

PIC X(5) VALUE "A" *> Abbbb
PIC X(5) VALUE ALL "A" %> AAAAA
PIC 9(3) VALUE 1 *> 001

PIC 9(3) VALUE ALL "1" x> 111

E. When used in the definition of a screen data item:

a. A figurative constant may not be supplied as <literal-1>.

b. Any "FROM" (see [FROM], page 168), "T0" (see [TO], page 207) or "USING" (see
[USING], page 219) clause in the same data item’s definition will be ignored.

c. If there is no picture clause specified, the size of the screen data item will be the
length of the <literal-1> value.

d. If there is no picture clause and the "ALL" option is specified, the "ALL" option
will be ignored.

F. Giving a table an initial, compile-time value is one of the trickier aspects of COBOL
data definition. There are basically three standard techniques and a fourth that peo-
ple familiar with other COBOL implementations but new to GnuCOBOL may find
interesting. So, here are the three standard approaches:

a. Don’t bother worrying about it at compile-time. Use the "INITIALIZE" (see
[INITIALIZE], page 303) to initialize all data item occurrences in a table (at
run-time) to their data-type-specific default values (numerics: 0, alphabetic and
alphanumerics: spaces).

b. Initialize small tables at compile time by including a "VALUE" clause on the group
item that serves as a parent to the table, as follows:

05 SHIRT-SIZES VALUE "S 14M 15L 16XL17".
10 SHIRT-SIZE-TBL OCCURS 4 TIMES.
15 SST-SIZE PIC X(2).
15 SST-NECK PIC 9(2).

c. Initialize tables of almost any size at compilation time by utilizing the "REDEFINES"
(see [REDEFINES], page 196) clause:

05 SHIRT-SIZE-VALUES.

10 PIC X(4) VALUE "S 14".
10 PIC X(4) VALUE "M 15".
10 PIC X(4) VALUE "L 16".
10 PIC X(4) VALUE "XL17".
05 SHIRT-SIZES REDEFINES SHIRT-SIZE-VALUES.
10 SHIRT-SIZE-TBL OCCURS 4 TIMES.
15 SST-SIZE PIC X(2).
15 SST-NECK PIC 9(2).

Admittedly, this table is much more verbose than the one shown with a group
"VALUE". What is good about this initialization technique, however, is that you
can have as many "FILLER" and "VALUE" items as you need for a larger table, and
those values can be as long as necessary!

31 May 2018 Chapter 6 - DATA DIVISION

222 GnuCOBOL 3.0 rcl [03May2018] Programmer’s Guide

G. Many COBOL compilers do not allow the use of "VALUE" and "OCCURS" (see
[OCCURS], page 182) on the same data item; additionally, they don’t allow a "VALUE"
clause on a data item subordinate to an "OCCURS". GnuCOBOL, however, has neither
of these restrictions!

Observe the following example, which illustrates a fourth manner in which tables may
be initialized in GnuCOBOL:

05 X OCCURS 6 TIMES.
10 A PIC X(1) VALUE °?°.
10 B PIC X(1) VALUE °7’.
10 N PIC 9(2) VALUE 10.

In this example, all six "A" items will be initialized to "?7", all six "B" items will be
initialized to "%" and all six "N" items will be initialized to 10. It’s not clear exactly
how many times this sort of initialization will be useful, but it’s there if you need it.

5. The "FROM" (see [FROM], page 168), "T0" (see [TO], page 207), "USING" (see [USING],
page 219) and "VALUE" clauses are mutually-exclusive in any screen section data item’s
definition.

End of Chapter 6 — DATA DIVISION

Chapter 6 - DATA DIVISION 31 May 2018

GnuCOBOL 3.0 rcl [03May2018] Programmer’s Guide

7. PROCEDURE DIVISION

223

[PROCEDURE DIVISION Syntax

PROCEDURE DIVISION [{ USING Subprogram-Argument ...

[Event-Handler-Routine... .]

[END DECLARATIVES.]

General-Program-Logic

[Nested-Subprogram...]

[END PROGRAM|FUNCTION name-1]

+]
}

The PROCEDURE DIVISION of any GnuCOBOL program marks the point where all exe-

cutable code is written.

31 May 2018

Chapter 7 - PROCEDURE DIVISION

224

GnuCOBOL 3.0 rcl [03May2018] Programmer’s Guide

7.1. PROCEDURE DIVISION USING

:

PROCEDURE DIVISION Subprogram-Argument Syntax

[BY { REFERENCE [OPTIONAL] }] identifier-1
S }
{ VALUE [[UNSIGNED] SIZE IS { AUTO 1}
””””””””””””” T { = }
{ DEFAULT }
{ 7~ }
{ integer-1 }

The "USING" clause defines the arguments that will be passed to a GnuCOBOL program which
is serving as a subprogram.

1.

The reserved words "BY" and "IS" are optional and may be included, or not, at the discre-
tion of the programmer. The presence or absence of these words have no effect upon the
program.

The "USING" clause should only be used on the procedure division header of subprograms
(subroutines or user-defined functions).

The calling program will pass zero or more data items, known as arguments, to this subpro-
gram — there must be exactly as many <identifier-1> data items specified on the USING
clause as the maximum number of arguments the subprogram will ever be passed.

If a subprogram does not expect any arguments, it should not have a "USING" clause
specified on it’s procedure division header.

The order in which arguments are defined on the "USING" clause must correspond to the
order in which those arguments will be passed to the subprogram by the calling program.

The identifiers specified on the "USING" clause must be defined in the linkage section of the
subprogram. No storage is actually allocated for those identifiers in the subprogram as the
actual storage for them will exist in the calling program.

A GnuCOBOL subprogram expects that all arguments to it will be one of two things:

e The memory address of the actual data item (allocated in the calling program) that is
being passed to the subprogram.

e A numeric, full-word, binary value (i.e. "USAGE BINARY-LONG" (see [USAGE],
page 210)) which is the actual argument being passed to the subprogram.

In the case of the former, the "USING" clause on the procedure division header should
describe the argument via the "BY REFERENCE" clause — in the latter case, a "BY VALUE"
specification should be coded. This allows the code generated by the compiler to properly
reference the subprogram arguments at run-time.

"BY REFERENCE" is the assumed default for the first "USING" argument should no "BY"
clause be specified for it. Subsequent arguments will assume the "BY" specification of the
argument prior to them should they lack a "BY" clause of their own.

Chapter 7 - PROCEDURE DIVISION 31 May 2018

GnuCOBOL 3.0 rcl [03May2018] Programmer’s Guide 225

9. Changes made by a subprogram to the value of an argument specified on the "USING" clause
will "be visible" to the calling program only if "BY REFERENCE" was explicitly specified or
implicitly assumed for the argument on the subprogram’s procedure division header and
the argument was passed to the subprogram "BY REFERENCE" by the calling program. See
[Subprogram Arguments|, page 616, for additional information on the mechanics of how
arguments are passed to subprograms.

10. The optional "SIZE" clause allows you to specify the number of bytes a "BY VALUE" argu-
ment will occupy, with "SIZE DEFAULT" specifying 4 bytes (this is the default if no "SIZE"
clause is used), "SIZE AUTQ" specifying the size of the argument in the calling program and
"SIZE <integer-1>" specifying a specific byte count.

11. The optional "UNSIGNED" keyword, legal only if "SIZE AUTO" or "SIZE <integer-1>" are
coded, will add the "unsigned" attribute to the argument’s specification in the C-language
function header code generated for the subprogram. While not of any benefit when the
calling program is a GnuCOBOL program, this can improve compatibility with a C-language
calling program.

12. The "OPTIONAL" keyword, legal only on "BY REFERENCE" arguments, allows calling pro-
grams to code "OMITTED" for that corresponding argument when they call this subprogram.
See [CALL], page 264. for additional information on this feature.

31 May 2018 Chapter 7 - PROCEDURE DIVISION

226

GnuCOBOL 3.0 rcl [03May2018] Programmer’s Guide

7.2. PROCEDURE DIVISION CHAINING

:

PROCEDURE DIVISION Main-Program-Argument Syntax

[BY REFERENCE] [OPTIONAL] identifier-1

The "CHAINING" term provides one mechanism a programmer may use to retrieve command-line
arguments passed to a program at execution time.

1.

"PROCEDURE DIVISION CHAINING" may only be coded in a main program (that is, the first
program executed when a compiled GnuCOBOL compilation unit is executed). It cannot
be used in any form of subprogram.

The "CHAINING" clause defines arguments that will be passed to a main program from
the operating system. The argument identifiers specified on the CHAINING clause will be
populated by character strings comprised of the parameters specified to the program on the
command line that executed it, as follows:

A.

When a GnuCOBOL program is executed from a command-line, the complete command
line text will be broken into a series of "tokens", where each token is identified as being
a word separated from the others in the command text by at least one space. For
example, if the command line was /usr/local/myprog THIS IS A TEST, there will be
five tokens identified by the operating system — " /usr/local/myprog", "THIS", "IS",
"A" and "TEST™".

Multiple space-delimited tokens may be treated as a single token by enclosing them
in quotes. For example, there are only three tokens generated from the command
line C: \Pgms\myprog.exe "THIS IS A" TEST — "C:\Pgms\myprog.exe", "THIS IS A"
and "TEST". When quote characters are used to create multi-word tokens, the quote
characters themselves are stripped from the token’s value.

Once tokens have been identified, the first (the command) will be discarded; the rest
will be stored into the "CHAINING" arguments when the program begins execution,
with the 2nd token going to the 1st argument, the 3rd token going to the 2nd argument
and so forth.

If there are more tokens than there are arguments, the excess tokens will be discarded.

If there are fewer tokens than there are arguments, the excess arguments will be initial-
ized as if the "INITIALIZE <identifier-1>" (see [INITIALIZE], page 303) statement
were executed.

All identifiers specified on the CHAINING clause should be defined as PIC X, PIC A,
group items (which are treated implicitly as PIC X) or as PIC 9 USAGE DISPLAY.
The use of USAGE BINARY (or the like) data items as CHAINING arguments is not
recommended as all command-line tokens will be retained in their original character
form as they are moved into the argument data items.

If an argument identifier is smaller in storage size than the token value to be stored in
it, the right-most excess characters of the token value will be truncated as the value
is moved in. Any JUSTIFIED RIGHT clause on such an argument identifier will be
ignored.

Chapter 7 - PROCEDURE DIVISION 31 May 2018

GnuCOBOL 3.0 rcl [03May2018] Programmer’s Guide 227

H. If an argument is larger in storage size than the token value to be stored in it, the token
value will be moved into the argument identifier in a left-justified manner. unmodified-
modified byte positions in the identifier will be space filled, unless the argument iden-
tifier is defined as PIC 9 USAGE DISPLAY, in which case unmodified bytes will be
filled with "0" characters from the systems native character set.

This behaviour when the argument is defined as "PIC 9" may be unacceptable, as an
argument defined as "PIC 9(3)" but passed in a value of "1" from the command line
will receive a value of "100", not "001". Consider defining "numeric" command line
arguments as "PIC X" and then using the "NUMVAL" intrinsic function (see [NUMVAL],
page 447) function to determine the proper numeric value.

31 May 2018 Chapter 7 - PROCEDURE DIVISION

228 GnuCOBOL 3.0 rcl [03May2018] Programmer’s Guide

7.3. PROCEDURE DIVISION RETURNING

[PROCEDURE DIVISION RETURNING Syntax

RETURNING identifier-1

The RETURNING clause on the PROCEDURE DIVISION header documents that the subpro-
gram in which the clause appears will be returning a numeric value back to the program that
called it.

1. The "RETURNING" clause is optional within a subroutine, as not all subroutines return a
value to their caller.

2. The "RETURNING" clause is mandatory within a user-defined function, as all such must
return a numeric result.

3. The <identifier-1> data item should be defined as a USAGE BINARY-LONG data item.

4. Main programs that wish to "pass back" a return code value to the operating system
when they exit do not use RETURNING - they do so simply by MOVEing a value to the
"RETURN-CODE" special register.

5. This is not the only mechanism that a subprogram may use to pass a value back to it’s
caller. Other possibilities are:

A. The subprogram may modify any argument that is specified as "BY REFERENCE"
on it’s PROCEDURE DIVISION header. Whether the calling program can actually
"see" any modifications depends upon how the calling program passed the argument
to the subprogram. See [CALL], page 264, for more information.

B. A data item with the "GLOBAL" (see [GLOBAL]J, page 170) attribute specified in it’s
description in the calling program is automatically visible to and updatable by a sub-
program nested with the calling program. See [Independent vs Contained vs Nested
Subprograms], page 609, for more information on subprogram nesting.

C. A data item defined with the "EXTERNAL" (see [EXTERNALJ, page 165) attribute in
a subprogram and the calling program (same name in both programs) is automati-
cally visible to and updatable by both programs, even if those programs are compiled
separately from one another.

Chapter 7 - PROCEDURE DIVISION 31 May 2018

GnuCOBOL 3.0 rcl [03May2018] Programmer’s Guide 229

7.4. PROCEDURE DIVISION Sections and Paragraphs

The procedure division is the only one of the COBOL divisions that allows you to create your
own sections and paragraphs. These are collectively referred to as ’Procedures’, and the names
you create for those sections and paragraphs are called ’Procedure Names’.

Procedure names are optional in the procedure division and — when used — are named entirely
according to the needs and whims of the programmer.

Procedure names may be up to thirty one (31) characters long and may consist of letters,
numbers, dashes and underscores. A procedure name may neither begin nor end with a dash (-)
or underscore (-) character. This means that "Main", "0100-Read-Transaction" and "17" are
all perfectly valid procedure names.

There are three circumstances under which the use of certain GnuCOBOL statements or options
will require the specification of procedures. These situations are:

1. When "DECLARATIVES" (see [DECLARATIVES], page 230) are specified.
2. When the "ENTRY" statement (see [ENTRY], page 287) is being used.

3. When any procedure division statement that references procedures is used. These state-
ments are:

e "ALTER <procedure-name>"

e "GO TO <procedure-name>"

e "MERGE ... OUTPUT PROCEDURE <procedure-name>"
e "PERFORM <procedure-name>"

e "SORT ... INPUT PROCEDURE <procedure-name>" and/or "SORT ... INPUT
PROCEDURE <procedure-name>"

31 May 2018 Chapter 7 - PROCEDURE DIVISION

230 GnuCOBOL 3.0 rcl [03May2018] Programmer’s Guide

7.5. DECLARATIVES

[DECLARATIVES Syntax j

section-name-1 SECTION.

USE { [GLOBAL] AFTER STANDARD { EXCEPTION } PROCEDURE ON { INPUT }}
e {0 T { e } { Y X
{ { ERROR ¥ { OUTPUT } 3}
< T { - T}
{ { 1-0 } 3}
{ FOR DEBUGGING ON { procedure-name-1 } { + 3
{ ~mmem { ALL PROCEDURES } { EXTEND Y}
{ { 77~ ~rmmmmmes } { - } 3}
{ { REFERENCES OF identifier-1 } { file-name-1 } }
{ }
{ [GLOBAL] BEFORE REPORTING identifier-2 }
{ -~ e mmmmmeees }
{ }
{ }

The "AFTER EXCEPTION CONDITION" and "AFTER EC" clauses are syntactically recognized but
are otherwise non-functional.

The "DECLARATIVES" area of the procedure division allows the programmer to define a series of
"trap" procedures (referred to as declarative procedures) capable of intercepting certain events
that may occur at program execution time. The syntax diagram above shows the format of a
single such procedure.

1. The reserved words "AFTER", "FOR", "ON", "PROCEDURE" and "STANDARD" are optional and
may be included, or not, at the discretion of the programmer. The presence or absence of
these words has no effect upon the program.

2. "EC" and "EXCEPTION CONDITION" are interchangeable.

3. The declaratives area may contain any number of declarative procedures, but no two declar-
ative procedures should be coded to trap the same event.

4. The following points apply to the "USE BEFORE REPORTING" clause:

A. <identifier-2> must be a report group.

B. At run-time, the declaratives procedure will be executed prior to the processing of the
specified report group’s presentation; within the procedure you may take either of the
following actions:

e You may adjust the value(s) of any items referenced in "SUM" (see [SUM], page 472)
or "SOURCE" (see [SOURCE], page 202) clauses in the report group.

e You may execute the "SUPPRESS" (see [SUPPRESS], page 371) statement to
squelch the presentation of the specified report group altogether. Note that you

Chapter 7 - PROCEDURE DIVISION 31 May 2018

GnuCOBOL 3.0 rcl [03May2018] Programmer’s Guide 231

will be suppressing this one specific instance of that group’s presentation and not
all of them.

5. The following points apply to the "USE FOR DEBUGGING" clause:

A. This clause allows you to define a declarative procedure that will be invoked

whenever. . .
e .. .<identifier-1> is referenced on any statement.
e .. .<procedure-name-1> is executed.

e ...any procedure is executed ("ALL PROCEDURES").

B. A "USE FOR DEBUGGING" declarative procedure will be ignored at compilation time un-
less "WITH DEBUGGING MODE" is specified in the "SOURCE-COMPUTER" (see [SOURCE-
COMPUTER], page 87) paragraph. Neither the compiler’s "-fdebugging-line"
switch nor "-debug" switch will activate this feature.

C. Any "USE FOR DEBUGGING" declarative procedures will be ignored at execution time
unless the "COB_SET_DEBUG" run-time environment variable (see [Run Time Environ-
ment Variables|, page 596) has been set to a value of "Y", "y" or "1".

D. The typical use of a "USE FOR DEBUGGING" declarative procedure is to display the
"DEBUG-ITEM" special register , which will be implicitly and automatically created in
your program for you if "WITH DEBUGGING MODE" is active.

The structure of DEBUG-ITEM will be as follows:
01 DEBUG-ITEM.

05 DEBUG-LINE PIC X(6).

05 FILLER PIC X(1) VALUE SPACE.

05 DEBUG-NAME PIC X(31).

05 FILLER PIC X(1) VALUE SPACE.

05 DEBUG-SUB-1 PIC S9(4) SIGN LEADING SEPARATE.
05 FILLER PIC X(1) VALUE SPACE.

05 DEBUG-SUB-2 PIC S9(4) SIGN LEADING SEPARATE.
05 FILLER PIC X(1) VALUE SPACE.

05 DEBUG-SUB-3 PIC S9(4) SIGN LEADING SEPARATE.
05 FILLER PIC X(1) VALUE SPACE.

05 DEBUG-CONTENTS PIC X(31).

where. . .

"DEBUG-LINE"
. is the program line number of the statement that triggered the declar-
atives procedure.

"DEBUG-NAME"
. is the procedure name or identifier name that triggered the declaratives
procedure.

"DEBUG-SUB-1"
. is the first subscript value (if any) for the reference of the identifier
that triggered the declaratives procedure.

31 May 2018 Chapter 7 - PROCEDURE DIVISION

232 GnuCOBOL 3.0 rcl [03May2018] Programmer’s Guide

"DEBUG-SUB-2"
. is the second subscript value (if any) for the reference of the identifier
that triggered the declaratives procedure.

"DEBUG-SUB-3"
. is the third subscript value (if any) for the reference of the identifier
that triggered the declaratives procedure.

"DEBUG-CONTENTS"

. is a (brief) statement of the manner in which the procedure that trig-
gered the declaratives procedure was executed or the first 31 characters of
the value of the identifier whose reference triggered the declaratives proce-
dure (the value after the statement was executed).

6. The "USE AFTER STANDARD ERROR PROCEDURE" clause defines a declarative procedure in-
voked any time a failure is encountered with the specified I/O type (or against the specified

file(s)).

7. The "GLOBAL" (see [GLOBAL], page 170) option, if used, allows a declarative procedure to
be used across the program containing the "USE" statement and any subprograms nested
within that program.

8. Declarative procedures may not reference any other procedures defined outside the scope
of DECLARATIVES.

7.6. Common Clauses on Executable Statements

7.6.1. AT END + NOT AT END

[AT END Syntax }

[AT END imperative-statement-1]

[NOT AT END imperative-statement-2]

"AT END" clauses may be specified on "READ" (see [READ], page 330), "RETURN" (see RETURN],
page 337), "SEARCH" (see [SEARCH], page 341) and "SEARCH ALL" (see [SEARCH ALL],
page 343) statements.

1. The following points pertain to the use of these clauses on "READ" (see [READ], page 330)
and "RETURN" (see [RETURN], page 337) statements:

A. The "AT END" clause will — if present — cause <imperative-statement-1> (see
[Imperative Statement], page 638) to be executed if the statement fails due to a file
status of 10 (end-of-file). See [File Status Codes], page 104, for a list of possible File

Status codes.

An "AT END" clause will not detect other non-zero file-status values.

Chapter 7 - PROCEDURE DIVISION 31 May 2018

GnuCOBOL 3.0 rcl [03May2018] Programmer’s Guide 233

Use a "DECLARATIVES" (see [DECLARATIVES], page 230) routine or an explicitly-
declared file status field tested after the "READ" or "RETURN" to detect error conditions
other than end-of-file.

B. A "NOT AT END" clause will cause <imperative-statement-2> to be executed if the
"READ" or "RETURN" attempt is successful.

2. The following points pertain to the use of these clauses on "SEARCH" (see [SEARCH],
page 341) and "SEARCH ALL" (see [SEARCH ALL], page 343) statements:

A. An "AT END" clause detects and handles the case where either form of table search has
failed to locate an entry that satisfies the search conditions being used.

B. The "NOT AT END" clause is not allowed on either form of table search.

31 May 2018 Chapter 7 - PROCEDURE DIVISION

234 GnuCOBOL 3.0 rcl [03May2018] Programmer’s Guide

7.6.2. CORRESPONDING

Three GnuCOBOL statements — "ADD" (see [ADD CORRESPONDING], page 259), "MOVE"
(see [IMOVE CORRESPONDING], page 317) and "SUBTRACT" (see [SUBTRACT CORRE-
SPONDING], page 370) support the use of a "CORRESPONDING" option:

ADD CORRESPONDING group-item-1 TO group-item-2

MOVE CORRESPONDING group-item-1 TO group-item-2

SUBTRACT CORRESPONDING group-item-1 FROM group-item-2

This option allows one or more data items within one group item (<group-item-1> — the first
named on the statement) to be paired with correspondingly-named (hence the name) in a second
group item (<group-item-2> — the second named on the statement). The contents of <group-
item-1> will remain unaffected by the statement while one or more data items within <group-
item-2> will be changed.

In order for <data-item-1>, defined subordinate to group item <group-item-1> to be a "corre-
sponding" match to <data-item-2> which is subordinate to <group-item-2>, each of the following
must be true:

1. Both <data-item-1> and <data-item-2> must have the same name, and that name may not
explicitly or implicitly be "FILLER".
2. Both <data-item-1> and <data-item-2>. ..
A. .. .must exist at the same relative structural "depth" of definition within <group-item-
1> and <group-item-2>, respectively

B. ...and all "parent" data items defined within each group item must have identical
(but non-"FILLER") names.

3. When used with a "MOVE" verb. ..

A. .. .one of <data-item-1> or <data-item-2> (but not both) is allowed to be a group item

B. ...and it must be valid to move <data-item-1> TO <data-item-2>.

4. When used with "ADD" or "SUBTRACT" verbs, both <data-item-1> and <data-item-2> must
be numeric, elementary, unedited items.

5. Neither <data-item-1> nor <data-item-2> may be a "REDEFINES" (see [REDEFINES],
page 196) or "RENAMES" (see [RENAMES], page 197) of another data item.

6. Neither <data-item-1> nor <data-item-2> may have an "0CCURS" (see [OCCURS], page 182)
clause, although either may contain subordinate data items that do have an "OCCURS" clause
(assuming rule 3a applies)

Observe the definitions of data items "Q" and "Y". ..

01 Q. 01 Y.
03 X. 02 A PIC X(1).
05 A PIC 9(1). 02 G1.
05 G1. 03 G2.
10 G2. 04 B PIC X(1).
15 B PIC X(1). 02 C PIC X(1).
05 C. 02 G3.
10 FILLER PIC X(1). 03 G5.
05 G3. 04 D PIC X(1).

Chapter 7 - PROCEDURE DIVISION 31 May 2018

GnuCOBOL 3.0 rcl [03May2018] Programmer’s Guide 235

10 G4.
156 D PIC X(1).
05 E PIC X(1).
05 F REDEFINES V1
PIC X(1).
05 G.
10 G6 OCCURS 4 TIMES
PIC X(1).
05 H PIC X(4).
05 I PIC 9(1).
05 J.
10 K.

156 M PIC X(1).

03 G6 PIC X(1).
E PIC 9(1).
F PIC X(1).
G PIC X(4).
H OCCURS 4 TIMES

PIC X(1).
I RENAMES E.
J.
03 K.

04 L.
05 M.

The following are the valid CORRESPONDING matches, assuming the statement "MOVE
CORRESPONDING X TO Y" is being executed (there are no valid corresponding matches for "ADD
CORRESPONDING" or "SUBTRACT CORRESPONDING" because every potential match up violates rule

#4):

A, B, C, G

The following are the CORRESPONDING match ups that passed rule #1 (but failed on another
rule), and the reasons why they failed.

Data
Item
IIDII
IIEII
IIFII
IIG1 n
IIG2 n
IIG3H
IIG4 n
IIG5 n
IIG6 n
IIH"
n I n
n Jll
IIKII
IIL"
IIMII

Failure Reason

Fails due to rule #2b
Fails due to rule #3b
Fails due to rule #5
Fails due to rule #3a
Fails due to rule #3a
Fails due to rule #3a
Fails due to rule #1
Fails due to rule #1
Fails due to rule #6
Fails due to rule #6
Fails due to rule #5
Fails due to rule #3a
Fails due to rule #3a
Fails due to rule #1
Fails due to rule #2a

7.6.3. INVALID KEY + NOT INVALID KEY

:

INVALID KEY Syntax

[INVALID KEY imperative-statement-1]

31 May 2018

Chapter 7 - PROCEDURE DIVISION

236 GnuCOBOL 3.0 rcl [03May2018] Programmer’s Guide

"INVALID KEY" clauses may be specified on "DELETE" (see [DELETE], page 274), "READ" (see
[Random READ], page 332), "REWRITE" (seec [REWRITE], page 338), "START" (see [START],
page 360) and "WRITE" (see [WRITE], page 379) statements.

Specification of an "INVALID KEY" clause will allow your program to trap an I/O failure con-
dition (with an I/O error code in the file’s "FILE-STATUS" (see [SELECT], page 101) field)
that has occurred due to a record-not-found condition and handle it gracefully by executing
<imperative-statement-1> (see [Imperative Statement|, page 638).

An optional "NOT INVALID KEY" clause will cause <imperative-statement-2> to be executed if
the statement’s execution was successful.

7.6.4. ON EXCEPTION + NOT ON EXCEPTION

[ON EXCEPTION Syntax J

[ON EXCEPTION imperative-statement-1]

[NOT ON EXCEPTION imperative-statement-2]

"EXCEPTION" clauses may be specified on "ACCEPT" (see [ACCEPT], page 243), "CALL" (see
[CALL], page 264) and "DISPLAY" (see [DISPLAY], page 275) statements.

Specification of an exception clause will allow your program to trap a failure condition that
has occurred and handle it gracefully by executing <imperative-statement-1> (see [Imperative
Statement], page 638). If such a condition occurs at runtime without having one of these
clauses specified, an error message will be generated (by the GnuCOBOL runtime library) to
the SYSERR device (pipe 2). The program may also be terminated, depending upon the type
and severity of the error.

An optional "NOT ON EXCEPTION" clause will cause <imperative-statement-2> to be executed if
the statement’s execution was successful.

7.6.5. ON OVERFLOW + NOT ON OVERFLOW

[ON OVERFLOW Syntax

[ON OVERFLOW imperative-statement-1]

[NOT ON OVERFLOW imperative-statement-2]

"OVERFLOW" clauses may be specified on "CALL" (see [CALL], page 264), "STRING" (see
[STRING], page 364) and "UNSTRING" (see [UNSTRING], page 375) statements.

Chapter 7 - PROCEDURE DIVISION 31 May 2018

GnuCOBOL 3.0 rcl [03May2018] Programmer’s Guide 237

An "ON OVERFLOW" clause will allow your program to trap a failure condition that has occurred
and handle it gracefully by executing <imperative-statement-1> (see [Imperative Statement],
page 638). If such a condition occurs at runtime without having one of these clauses specified,
an error message will be generated (by the GnuCOBOL runtime library) to the SYSERR device
(pipe 2). The program may also be terminated, depending upon the type and severity of the
error.

An optional "NOT ON OVERFLOW" clause will cause <imperative-statement-2> to be executed if
the statement’s execution was successful.

7.6.6. ON SIZE ERROR + NOT ON SIZE ERROR

[ON SIZE ERROR Syntax J

[ON SIZE ERROR imperative-statement-1]

[NOT ON SIZE ERROR imperative-statement-2]

"SIZE ERROR" clauses may be included on "ADD" (see [ADD], page 255), "COMPUTE" (see
[COMPUTE], page 271), "DIVIDE" (see [DIVIDE], page 281), "MULTIPLY" (see [MULTIPLY],
page 318) and "SUBTRACT" (see [SUBTRACT], page 366) statements.

Including an "ON SIZE ERROR" clause on an arithmetic statement will allow your program to
trap a failure of an arithmetic statement (either generating a result too large for the receiv-
ing field, or attempting to divide by zero) and handle it gracefully by executing <imperative-
statement-1> (see [Imperative Statement], page 638). Field size overflow conditions occur
silently, usually without any runtime messages being generated, even though such events rarely
lend themselves to generating correct results. Division by zero errors, when no "ON SIZE ERROR"
clause exists, will produce an error message (by the GnuCOBOL runtime library) to the SY-
SERR device (pipe 2) and will also abort the program.

An optional "NOT ON SIZE ERROR" clause will cause <imperative-statement-2> to be executed
if the arithmetic statement’s execution was successful.

7.6.7. ROUNDED

[ROUNDED Syntax
ROUNDED [MODE IS { AWAY-FROM-ZERO }
””””””” T 2 S }

{ NEAREST-AWAY-FROM-ZERO }
{ " }
{ NEAREST-EVEN }
S }
{ NEAREST-TOWARD-ZERO }
L }
{ PROHIBITED }
{ ~wrrmmmeee }

31 May 2018 Chapter 7 - PROCEDURE DIVISION

238

GnuCOBOL 3.0 rcl [03May2018] Programmer’s Guide

{ TOWARD-GREATER

L B R s

GnuCOBOL provides for control over the final rounding process applied to the receiving fields

on all arithmetic verbs.

Each of the arithmetic statements ("ADD" (see [ADD], page 255),

"COMPUTE" (see [COMPUTE], page 271), "DIVIDE" (see [DIVIDE], page 281), "MULTIPLY" (see
[MULTIPLY], page 318) and "SUBTRACT" (see [SUBTRACT], page 366)) statements allow an
optional "ROUNDED" clause to be applied to each receiving data item.

The following rules apply to the rounding behaviour induced by this clause.

1. Rounding only applies when the result being saved to a receiving field with a "ROUNDED"
clause is a non-integer value.

2. Absence of a "ROUNDED" clause is the same as specifying "ROUNDED MODE IS TRUNCATION".

3. Use of a "ROUNDED" clause without a "MODE" specification is the same as specifying "ROUNDED

MODE IS NEAREST-AWAY-FROM-ZERO".

The behaviour of the eight different rounding modes is defined in the following table. Note that
a "..." indicates the last digit repeats. The examples assume an integer receiving field.

"AWAY-FROM-ZERO"

Rounding is to the nearest value of larger magnitude.

-3.510 = 4
-3.500 = -4

-3.499. ..

= 4

-2.500 = -3

-2.499. ..

= -3

"NEAREST-AWAY-FROM-ZERQO"

+3.510 = +4
+3.500 = +4
+3.499... = +4
+2.500 = +3
+2.499... = +3

Rounding is to the nearest value (larger or smaller). If two values are equally near,
the value with the larger absolute value is selected.

-3.510 = 4
-3.500 = -4

-3.499. ..

= -3

-2.500 = -3

-2.499. ..

"NEAREST-EVEN"

= 2

+3.510 = +4
+3.500 = +4
+3.499... = +3
+2.500 = +3
+2.499... = +2

Rounding is to the nearest value (larger or smaller). If two values are equally near,
the value whose rightmost digit is even is selected. This mode is sometimes called
"Banker’s rounding".

-3.510 = 4

Chapter 7 - PROCEDURE DIVISION

+3.510 = +4

31 May 2018

GnuCOBOL 3.0 rcl [03May2018] Programmer’s Guide

-3.500 = -4
-3.499... = -3
-2.500 = -2
-2.499... = -2

"NEAREST-TOWARD-ZERO"

239

+3.500 = +4
+3.499... = +3
+2.500 = +2
+2.499... = +2

Rounding is to the nearest value (larger or smaller). If two values are equally near,
the value with the smaller absolute value is selected.

-3.510 = -4
-3.500 = -3
-3.499... = -3
-2.500 = -2
-2.499... = -2

"PROHIBITED"

+3.510 = +4
+3.500 = +3
+3.499... = +3
+2.500 = +2
+2.499... = +2

No rounding is performed. If the value cannot be represented exactly in the desired
format, the EC-SIZE-TRUNCATION condition (exception code 1005) is set (and
may be retrieved via the "ACCEPT" (see [ACCEPT FROM Runtime-Info|, page 252)
statement) and the results of the operation are undefined.

-3.510 = Undefined
-3.500 = Undefined

-3.499. .. = Undefined

-2.500 = Undefined

-2.499. .. = Undefined

"TOWARD-GREATER"

+3.510 = Undefined
+3.500 = Undefined
+3.499. .. = Undefined
+2.500 = Undefined
+2.499. .. = Undefined

Rounding is toward the nearest value whose algebraic value is larger.

-3.510 = -3
-3.500 = -3
-3.499... = -3
-2.500 = -2
-2.499... = -2

"TOWARD-LESSER"

+3.510 = +4
+3.500 = +4
+3.499... = +4
+2.500 = +3
+2.499... = +3

Rounding is toward the nearest value whose algebraic value is smaller.

-3.510 = -4
-3.500 = -4
-3.499... = A4
-2.500 = -3
-2.499... = -3

"TRUNCATION"

+3.510 = +3
+3.500 = +3
+3.499... = +3
+2.500 = +2
+2.499... = +2

Rounding is to the nearest value whose magnitude is smaller.

-3.510 = -3
-3.500 = -3
-3.499... = -3
-2.500 = -2
-2.499... = -2

31 May 2018

+3.510 = +3
+3.500 = +3
+3.499... = +3
+2.500 = +2
+2.499... = +2

Chapter 7 - PROCEDURE DIVISION

240 GnuCOBOL 3.0 rcl [03May2018] Programmer’s Guide

7.7. Special Registers

GnuCOBOL, like other COBOL dialects, includes a number of data items that are automati-
cally available to a programmer without the need to actually define them in the data division.
COBOL refers to such items as registers or special registers. The special registers available to a
GnuCOBOL program are as follows:

"COB-CRT-STATUS"

PIC 9(4) — This is the default data item allocated for use by the "ACCEPT <screen-
data-item>" statement (see [ACCEPT screen-data-item|, page 246), if no "CRT
STATUS" (see [SPECIAL-NAMES], page 90) clause was specified..

"DEBUG-ITEM"

Group Item — A group item in which debugging information generated by a "USE
FOR DEBUGGING" section in the declaratives area of the procedure division will place
information documenting why the "USE FOR DEBUGGING" procedure was invoked.
Consult the "DECLARATIVES" (see [DECLARATIVES], page 230) documentation
for information on the structure of this register.

"LINAGE-COUNTER"

BINARY-LONG SIGNED — An occurrence of this register exists for each selected
file having a "LINAGE" (see [File/Sort-Description], page 121) clause. If there are
multiple files whose file descriptions have "LINAGE" clauses, any explicit references
to this register will require qualification (using "OF file-name"). The value of this
register will be the current logical line number within the page body. The value of
this register cannot be modified.

"LINE-COUNTER"

BINARY-LONG SIGNED — An occurrence of this register exists for each report
defined in the program (via an "RD" (see [REPORT SECTION], page 132)). If there
are multiple reports, any explicit references to this register not made in the report
section will require qualification ("OF report-name"). The value of this register will
be the current logical line number on the current page. The value of this register
cannot be modified.

"NUMBER-OF-CALL-PARAMETERS"

BINARY-LONG SIGNED — This register contains the number of arguments passed
to a subroutine — the same value that would be returned by the "C$NARG" built-in
system subroutine (see [CSNARG], page 504). Its value will be zero when referenced
in a main program. This register, when referenced from within a user-defined func-
tion, returns a value of one (1) if the function has any number of arguments and a
zero if it has no arguments.

"PAGE-COUNTER"

BINARY-LONG SIGNED — An occurrence of this register exists for each report
having an "RD" (see [REPORT SECTION], page 132). If there are multiple such
reports, any explicit references to this register not made in the report section will
require qualification ("OF report-name"). The value of this register will be the
current report page number. The value of this register cannot be modified.

Chapter 7 - PROCEDURE DIVISION 31 May 2018

GnuCOBOL 3.0 rcl [03May2018] Programmer’s Guide 241

"RETURN-CODE"

BINARY-LONG SIGNED — This register provides a numeric data item into which a
subroutine may "MOVE" (see [MOVE], page 316) a value (which will then be available
to the calling program) prior to transferring control back to the program that called
it, or into which a main program may "MOVE" a value before returning control to the
operating system. Many built-in subroutines will return a value using this register.
These values are — by convention — used to signify success (usually with a value
of 0) or failure (usually with a non-zero value) of the process the program was
attempting to perform. This register may also be modified by a subprogram as a
result of that subprogram’s use of the "RETURNING" (see [PROCEDURE DIVISION
RETURNING], page 228) clause.

"SORT-RETURN"

BINARY-LONG SIGNED — This register is used to report the success/fail status
of a "RELEASE" (see [RELEASE], page 335) or "RETURN" (see [RETURN], page 337)
statement. A value of 0 is reported on success. A value of 16 denotes failure. An
"AT END" (see [AT END + NOT AT END], page 232) condition on a "RETURN" is
not considered a failure.

"WHEN-COMPILED"

PIC X(16) — This register contains the date and time the program was compiled
in the format "mm/dd/yyhh.mm.ss". Note that only a two-digit year is provided.

31 May 2018 Chapter 7 - PROCEDURE DIVISION

242

GnuCOBOL 3.0 rcl [03May2018] Programmer’s Guide

LENGTH OF Syntax

LENGTH OF numeric-literal-1 | identifier-1

Alphanumeric literals and identifiers may optionally be prefixed with the "LENGTH
OF" clause. The compile-time value generated by this clause will be the number of
bytes in the alphanumeric literal or the defined size (in bytes) of the identifier.

1. The reserved word "OF" is optional and may be included, or not, at the dis-

cretion of the programmer. The presence or absence of this word has no effect
upon the program.

Here is an example. The following two GnuCOBOL statements both display
the same result (27):

01 Demo-Identifier PIC X(27).

DISPLAY LENGTH OF "This is a LENGTH OF Example"
DISPLAY LENGTH OF Demo-Identifier

. The "LENGTH OF" clause on a literal or identifier reference may generally be used

anywhere a numeric literal might be specified, with the following exceptions:

e As part of the "FROM" clause of a "WRITE" (see [WRITE], page 379) or
"RELEASE" statement (see [RELEASE], page 335).

e As part of the "TIMES" clause of a "PERFORM" statement (see [PERFORM],
page 324).

Chapter 7 - PROCEDURE DIVISION 31 May 2018

GnuCOBOL 3.0 rcl [03May2018] Programmer’s Guide 243

7.8. GnuCOBOL Statements

7.8.1. ACCEPT

7.8.1.1. ACCEPT FROM CONSOLE

[ACCEPT FROM CONSOLE Syntax

ACCEPT { identifier-1 } [FROM mnemonic-name-1]

{ OMITTED }

This format of the "ACCEPT" statement is used to read a value from the console window or the
standard input device and store it into a data item (<identifier-1>).

1. If no "FROM" clause is specified, "FROM CONSOLE" is assumed.

2. The specified <mnemonic-name-1> must either be one of the built-in device names
"CONSOLE", "STDIN", "SYSIN" or "SYSIPT", or a user-defined (see [SPECIAL-NAMES],
page 90) mnemonic name attached to one of those four device names.

3. Input will be read either from the console window ("CONSOLE") or from the system-standard
input (pipe 0 = "STDIN", "SYSIN" or "SYSIPT") and will be saved in <identifier-1>.

4. If <identifier-1> is a numeric data item, the character value read from the console or
standard-input device will be parsed according to the rules for input to the "NUMVAL"
intrinsic function (see [NUMVAL], page 447), except that none of the trailing sign formats
are honoured.

31 May 2018 Chapter 7 - PROCEDURE DIVISION

244

GnuCOBOL 3.0 rcl [03May2018] Programmer’s Guide

7.8.1.2. ACCEPT FROM COMMAND-LINE

[

ACCEPT FROM COMMAND-LINE Syntax

ACCEPT identifier-1

FROM { COMMAND-LINE }
SR B }
{ ARGUMENT-NUMBER b
2 }
{ ARGUMENT-VALUE }
{ ~rommrrm e }
{ [ON EXCEPTION imperative-statement-1] }
{ " }
{ [NOT ON EXCEPTION imperative-statement-2] }

[END-ACCEPT] mn s

This format of the "ACCEPT" statement is used to retrieve information from the programs
command-line.

1.

The reserved word "ON" is optional and may be included, or not, at the discretion of the
programmer. The presence or absence of this word has no effect upon the program.

When you accept from the "COMMAND-LINE" option, you will retrieve the entire set of ar-
guments entered on the command line that executed the program, exactly as they were
specified. Parsing that returned data into its meaningful information will be your respon-
sibility.

By accepting from "ARGUMENT-NUMBER", you will be asking the GnuCOBOL run-time system
to parse the arguments from the command-line and return the number of arguments found.
Parsing will be conducted according to the following rules:

A. Arguments will be separated by treating spaces and/or tab characters as the delimiters
between arguments. The number of such delimiters separating two non-blank argument
values is irrelevant.

B. Strings enclosed in double-quote characters (") will be treated as a single argument,
regardless of how many spaces or tab characters (if any) might be embedded within
those quotation characters.

C. On Windows systems, single-quote, or apostrophe characters () will be treated just
like any other data character and will NOT delineate argument strings.

By accepting from "ARGUMENT-VALUE", you will be asking the GnuCOBOL run-time system

to parse the arguments from the command-line and return the "current" argument. You

specify which argument number is "current" via the "ARGUMENT-NUMBER" option on the

"DISPLAY" statement (see [DISPLAY UPON COMMAND-LINE], page 277). Parsing of

arguments will be conducted according to the rules set forth above.

The optional "ON EXCEPTION" and "NOT ON EXCEPTION" clauses may be used to detect and
react to the failure or success, respectively, of an attempt to retrieve an "ARGUMENT-VALUE".
See [ON EXCEPTION + NOT ON EXCEPTION], page 236, for additional information.

Chapter 7 - PROCEDURE DIVISION 31 May 2018

GnuCOBOL 3.0 rcl [03May2018] Programmer’s Guide 245

7.8.1.3. ACCEPT FROM ENVIRONMENT

[

ACCEPT FROM ENVIRONMENT Syntax j

ACCEPT identifier-1

FROM { ENVIRONMENT-VALUE
R B
{ ENVIRONMENT { literal-1 }
{ ~~rmmmeees { identifier-1 }
[ON EXCEPTION imperative-statement-1

}
+
}
}
]

[NOT ON EXCEPTION imperative-statement-2]

[END-ACCEPT]

This format of the "ACCEPT" statement is used to retrieve environment variable values.

1.

The reserved word "ON" is optional and may be included, or not, at the discretion of the
programmer. The presence or absence of this word has no effect upon the program.

By accepting from "ENVIRONMENT-VALUE", you will be asking the GnuCOBOL run-time
system to retrieve the value of the environment variable whose name is currently in the
"ENVIRONMENT-NAME" register. A value may be placed into the "ENVIRONMENT-NAME" reg-
ister using the "ENVIRONMENT-NAME" option of the "DISPLAY" statement (see [DISPLAY
UPON ENVIRONMENT-NAME], page 278).

A simpler approach to retrieving an environment variables value is to use the "ENVIRONMENT"
option, where you specify the environment variable whose value is to be retrieved right on
the "ACCEPT" statement itself.

The optional "ON EXCEPTION" and "NOT ON EXCEPTION" clauses may be used to detect
and react to an attempt to retrieve the value of a non-existent environment variable or the

successful retrieval of an environment variable’s value, respectively. See [ON EXCEPTION
+ NOT ON EXCEPTION], page 236, for additional information.

31 May 2018 Chapter 7 - PROCEDURE DIVISION

246 GnuCOBOL 3.0 rcl [03May2018] Programmer’s Guide

7.8.1.4. ACCEPT screen-data-item

[ACCEPT screen-data-item Syntax

ACCEPT { identifier-1 }

{ OMITTED }

[{ FROM EXCEPTION-STATUS 1}]

| LINE NUMBER { integer-1 } }
| =~~~ { identifier-2 } }
| COLUMN|COL|POSITION NUMBER { integer-2 } | }
””””””””””””””””” { identifier-3 } | }
}
}
}

{ integer-3 }
{ identifier-4 }

AN AN m S A A A

[WITH [Attribute-Specification]...

[LOWER|UPPER]
[SCROLL { UP } [{ integer-4 } LINE|LINES]]
"""""" {~ } { identifier-5 }
{ DowN %}
[TIMEOUT|TIME-OUT AFTER { integer-5 1
””””””””””””””” { identifier-6 }
[CONVERSION]

The "FROM CRT", "MODE IS BLOCK", "CONVERSION" and "UPDATE" clauses are syntactically rec-
ognized but are otherwise non-functional.

This format of the "ACCEPT" statement is used to retrieve data from a formatted console window
screen.

1. The reserved words "AFTER", "IS", "NUMBER" and "ON" are optional and may be included,

Chapter 7 - PROCEDURE DIVISION 31 May 2018

GnuCOBOL 3.0 rcl [03May2018] Programmer’s Guide 247

or not, at the discretion of the programmer. The presence or absence of these words has no
effect upon the program.

2. The reserved words "COLUMN", "COL" and "POSITION" are interchangeable.
3. The reserved words "TIMEQUT" and "TIME-OUT" are interchangeable.

4. 1If <identifier-1> is defined in the "SCREEN SECTION" (see [SCREEN SECTION], page 140),
any "AT", <Attribute-Specification>, "LOWER", "UPPER" or "SCROLL" clauses will be ig-
nored. In these cases, an implied "DISPLAY" (see [DISPLAY screen-data-item], page 279)
of <identifier-1> will occur before input is accepted. Coding an explicit "DISPLAY
identifier-1" before an "ACCEPT identifier-1" is redundant and will incur the per-
formance penalty of painting the screen contents twice.

5. The various "AT" clauses provide a means of positioning the cursor to a specific spot on the
screen before the screen is read. One or the other (but not both) may be used, as follows:

A. The "LINE" and "COLUMN" clauses provide one mechanism for specifying the line and
column position to which the cursor will be positioned before allowing the user to enter
data. In the absence of one or the other, a value of 1 will be assumed for the one that
is missing. The author’s personal preference, however, is to explicitly code both.

B. The <literal-3> or <identifier-4> value, if specified, must be a four- or six-digit value
with the 1st half of the number indicating the line where the cursor should be positioned
and the second half indicating the column. You may code only one of each clause on
any "ACCEPT".

6. "WITH" options (including the various individual < Attribute-Specifications>) should be coded
only once.

7. The following <Attribute-Specification> clauses are allowed on the "ACCEPT" statement
— these are the same as those allowed for "SCREEN SECTION" data items. A particular
<Attribute-Specification> may be used only once in any "ACCEPT":

e "AUTO" (see [AUTO], page 150), "AUTO-SKIP" (see [AUTO-SKIP], page 151),
"AUTOTERMINATE" (see [AUTOTERMINATE], page 152), "TAB"

e "BACKGROUND-COLOR" (see [BACKGROUND-COLOR], page 153)
e "BEEP" (see [BEEP], page 155), "BELL" (see [BELL], page 156)
e "BLINK" (see [BLINK], page 159)

e "FOREGROUND-COLOR" (see [FOREGROUND-COLOR], page 167)
e "FULL" (see [FULLJ, page 169), "LENGTH-CHECK" (see [LENGTH-CHECK], page 176)
e "HIGHLIGHT" (see [HIGHLIGHT], page 172)

e "LEFTLINE" (see [LEFTLINE], page 175)

e "LOWLIGHT" (see [LOWLIGHT], page 179)

e "OVERLINE" (see [OVERLINE], page 185)

e "PROMPT" (see [PROMPT], page 194)

e "PROTECTED" (see [PROTECTED)], page 195)

e "REQUIRED" (see [REQUIRED], page 198), "EMPTY-CHECK" (see [EMPTY-CHECK],
page 163)

31 May 2018 Chapter 7 - PROCEDURE DIVISION

248 GnuCOBOL 3.0 rcl [03May2018] Programmer’s Guide

e "REVERSE-VIDEQ" (sec [REVERSE-VIDEO], page 199)
e "SECURE" (see [SECURE], page 200), "NO-ECHO" (see [NO-ECHO], page 181)
e "UNDERLINE" (sec [UNDERLINE], page 209)

8. The "SCROLL" option will cause the entire contents of the screen to be scrolled "UP" or
"DOWN" by the specified number of lines before any value is displayed on the screen. It is
syntactically allowable to specify a "SCROLL UP" clause as well as a "SCROLL DOWN" clause.
In such an instance, it is the last one specified that will be honoured. If no "LINES"
specification is made, "1 LINE" will be assumed.

9. The "TIMEQUT" option will cause the "ACCEPT" to wait no more than the specified number
of seconds for input. The wait count may be specified as a positive integer or a numeric
data item with a positive value.

10. This format of the "ACCEPT" statement will be terminated by any of the following events:

A. When the ’Enter’ key is pressed.

B. Expiration of the "TIMEOUT" timer — this will be treated as if the Enter key had been
pressed with no data being entered.

C. When a function key (Fn) is pressed.

D. The pressing of the PgUp or PgDn keys, if the "COB_SCREEN_EXCEPTIONS" run-time
environment variable (see [Run Time Environment Variables|, page 596) is set to any
non-blank value.

E. The pressing of the Esc key if both the "COB_SCREEN_ESC" run-time environment vari-
able as well as "COB_SCREEN_EXCEPTIONS" run-time environment variable are set to
any non-blank value.

F. The pressing of the Up-arrow, Down-Arrow or PrtSc (Print Screen) keys. These keys
are not detectable on Windows systems, however.

11. The following apply when <identifier-1> is defined in the "SCREEN SECTION":

A. Alphanumeric data entered into <identifier-1> or any screen data item subordinate to
it must be consistent with the "PICTURE" (see [PICTURE], page 186) clause of that
item. This will be enforced at runtime by the "ACCEPT" statement.

B. If <identifier-1> or any screen data item subordinate to it are defined as numeric, en-
tered data must be acceptable as "NUMVAL" intrinsic function (see NUMVALJ, page 447)
input (no decimal points are allowed, however). The value stored into the screen data
item will be as if the input were passed to that function.

C. If <identifier-1> or any screen data item subordinate to it are defined as numeric edited,
entered data must be acceptable as "NUMVAL-C" intrinsic function (see [NUMVAL-C],
page 450) input (again, no decimal points are allowed). The value stored into the screen
data item will be as if the input were passed to that function.

12. The following apply when <identifier-1> is not defined in the "SCREEN SECTION":
A. Alphanumeric data entered into <identifier-1> should be consistent with the "PICTURE"
(see [PICTURE], page 186) clause of that item, although that will not be enforced by

the "ACCEPT" statement. You may use "Class Conditions" (see [Class Conditions],
page 46) after the data is accepted to enforce the data type.

B. If <identifier-1> is defined as numeric, entered data must be acceptable as "NUMVAL"

Chapter 7 - PROCEDURE DIVISION 31 May 2018

GnuCOBOL 3.0 rcl [03May2018] Programmer’s Guide 249

13.

14.

15.

16.

intrinsic function (see [NUMVAL], page 447) input (no decimal points are allowed,
however). The value stored into <identifier-1> will be as if the input were passed to
that function.

C. If <identifier-1> is defined as numeric edited, entered data must be acceptable as
"NUMVAL-C" intrinsic function (see [NUMVAL-C], page 450) input (again, no decimal
points are allowed). The value stored into <identifier-1> will be as if the input were
passed to that function.

The optional "ON EXCEPTION" and "NOT ON EXCEPTION" clauses may be used to detect and

react to the failure or success, respectively, of the screen I/O attempt. See [ON EXCEP-

TION + NOT ON EXCEPTION], page 236, for additional information.

After this format of the "ACCEPT" statement is executed, the program’s "CRT STATUS" (see
[SPECIAL-NAMES], page 90) identifier will be populated with one of the following:

Code Meaning

0000 ENTER key pressed

1001-1064 F1-F64, respectively, were pressed
2001 PgUp was pressed

2002 PgDn,was pressed

2003 Up Arrow was pressed

2004 Down-Arrow was pressed

2005 Esc was pressed

2006 PrtSc (Print Screen) was pressed
2007 Tab

2008 Back Tab

2009 Key Left

2010 Key Right

8000 NO Field

8001 Time Out

9000 Fatal

9001 Max Field

The actual key pressed to generate a function key (Fn) will depend on the type of terminal
device you're using (PC, Macintosh, VT100, etc.) and what type of enhanced display driver
was configured with the version of GnuCOBOL you’re using. For example, on a GnuCOBOL
build for a Windows PC using MinGW and PDCurses, F1-F12 are the actual F-keys on the
PC keyboard, F13-F24 are entered by shifting the F-keys, F25-F36 are entered by holding
Ctrl while pressing an F-key and F37-F48 are entered by holding Alt while pressing an
F-key. On the other hand, a GnuCOBOL implementation built for Windows using Cygwin
and NCurses treats the PCs F1-F12 keys as the actual F1-F12, while shifted F-keys will
enter F11-F20. With Cygwin/NCurses, Ctrl- and Alt-modified F-keys aren’t recognized.
Neither are Shift-F11 or Shift-F12.

Numeric keypad keys are not recognizable on Windows MinGW /PDCurses builds of Gnu-
COBOL, regardless of the number lock settings. Windows Cygwin/NCurses builds recognize
numeric keypad inputs properly. Although not tested during the preparation of this doc-
umentation, I would expect native Windows builds using PDCurses to behave as MinGW
builds do and native Unix builds using NCurses to behave as do Cygwin builds.

The optional "EXCEPTION-STATUS" clause may be used to detect exceptions from a prior
arithmetic verb such as COMPUTE to recover any errors produced. These are recovered
using the function "EXCEPTION-STATUS".

31 May 2018 Chapter 7 - PROCEDURE DIVISION

250 GnuCOBOL 3.0 rcl [03May2018] Programmer’s Guide

7.8.1.5. ACCEPT FROM DATE/TIME

[ACCEPT FROM DATE/TIME Syntax
ACCEPT identifier-1 FROM { DATE [YYYYMMDD] }
”””””” R Sttt

{ DAY [YYYYDDp] }
{~~ -~ }
{ DAY-OF-WEEK }
{ e }
[END-ACCEPT] { TIME }

This format of the "ACCEPT" statement is used to retrieve the current system date, time or
current day of the week and store it into a data item.

1. The data retrieved from the system and the format in which it is structured will vary, as

follows:

Syntax Data Retrieved Format
"DATE" Current date in Gregorian form yymmdd
"DATE YYYYMMDD" Current date in Gregorian form yyyymmdd
"DAY" Current date in Julian form yyddd
"DAY YYYYDDD" Current date in Julian form yyyyddd
"TIME" Time, including hundredths of a second (nn) hhmmssnn

Chapter 7 - PROCEDURE DIVISION 31 May 2018

GnuCOBOL 3.0 rcl [03May2018] Programmer’s Guide 251

7.8.1.6. ACCEPT FROM Screen-Info

:

ACCEPT FROM Screen-Info Syntax }

ACCEPT identifier-1

FROM { LINES|LINE-NUMBER }

AR Sttt ittt }
{ COLS|COLUMNS }
{ -~~~ e }
{ ESCAPE KEY }

This format of the "ACCEPT" statement is used to retrieve information about the console window
or about the user’s interactions with it.

1. The reserved words "LINES" and "LINE-NUMBER" are interchangeable.

2. The reserved words "COLS" and "COLUMNS" are interchangeable.

3. The following points pertain to the use of the "LINES" and "COLUMNS" options:

A.

B.

D.
E.

The "LINES" and "COLUMNS" options will retrieve the respective components of the size
of the console display.

When the console is running in a windowed environment, this will be the sizing of
the window in which the program is executing, in terms of horizontal ("COLUMNS") or
vertical ("LINES") character counts — not pixels.

When the system is not running a windowing environment, the physical console screen
attributes will be returned.

Values of 0 will be returned if GnuCOBOL was not generated to include screen 1/0.

See the documentation on the "CBL_GET_SCR_SIZE" built-in system subroutine (see
[CBL_GET_SCR_SIZE], page 537) for another way to retrieve this information.

4. The "ESCAPE KEY" option may be used after the "ACCEPT FROM Screen-Info" statement
(see [ACCEPT FROM Screen-Info|, page 251) has executed. The result returned will be
the four-digit "CRT STATUS" (see [SPECIAL-NAMES], page 90) identifier value. See [CRT
STATUS Codes|, page 249, for the specific code values.

31 May 2018 Chapter 7 - PROCEDURE DIVISION

252 GnuCOBOL 3.0 rcl [03May2018] Programmer’s Guide

7.8.1.7. ACCEPT FROM Runtime-Info

[ACCEPT FROM Runtime-Info Syntax

ACCEPT identifier-1
FROM { EXCEPTION STATUS }
[B }
{ USER NAME }

This format of the "ACCEPT" statement is used to retrieve run-time information such as the
most-recent error exception code and the current user’s user name.

1. The following points pertain to the use of the "EXCEPTION STATUS" option:

A. <identifier-1> must be defined as a "PIC X(4)" item.

B. See [Error Exception Codes|, page 404, for a complete list of the exception codes and
their meanings.

C. An alternative to the use of "ACCEPT FROM Runtime-Info" is to wuse the
"EXCEPTION-STATUS" intrinsic function (see [EXCEPTION-STATUS], page 404).

2. The following points pertain to the use of the "USER NAME" option:

A. The returned result is the userid that was used to login to the system with, and not
any actual first and/or last name of the user in question (unless, of course, that is the
information used as a logon id).

B. <identifier-1> should be defined large enough to receive the longest user-name on the
System.

C. If insufficient space is allocated, the returned value will be truncated.

D. If excess space is allocated, the returned value will be padded with spaces (to the right).

Chapter 7 - PROCEDURE DIVISION 31 May 2018

GnuCOBOL 3.0 rcl [03May2018] Programmer’s Guide 253

7.8.1.8. ACCEPT OMITTED

{ ACCEPT OMITTED Syntax j

ACCEPT OMITTED

1. For console : See 6.17.1.1 (ACCEPT FROM CONSOLE Syntax)
2. For Screen : See 6.17.1.4 (ACCEPT screen-data-item Syntax)

[END-ACCEPT 1]

This format of the "ACCEPT" statement will wait for a keyboard event that terminates in-
put; function keys, or Enter/Return, among others. CRT STATUS (COB-CRT-STATUS "CRT
STATUS" (see [SPECIAL-NAMES], page 90) if not explicitly defined) is set with the keycode,
listed in copy/screenio.cpy. It also handles a few other keycode terminations not normally used
to complete an extended accept.

1. The following are examples of keycodes that can be used:

COB-SCR-INSERT
COB-SCR-DELETE
COB-SCR-BACKSPACE
COB-SCR-KEY-HOME
COB-SCR-KEY-END

2. You can used extended attributes, useful for setting timeouts or positioning.

31 May 2018 Chapter 7 - PROCEDURE DIVISION

254 GnuCOBOL 3.0 rcl [03May2018] Programmer’s Guide

7.8.1.9. ACCEPT FROM EXCEPTION-STATUS

{ ACCEPT FROM EXCEPTION-STATUS Syntax }

ACCEPT exception-status-pic-9-4 FROM EXCEPTION-STATUS

This format of the "ACCEPT" statement will receive the status for any exceptions resulting from
a previous valid verb.

1. The following is an example of usage:

In WS:
01 exception-status pic 9(4).

In PD:

ACCEPT unexpected-rounding FROM EXCEPTION-STATUS
IF unexpected-rounding NOT EQUAL "0000" THEN
DISPLAY "Unexpected rounding. Code " unexpected-rounding
UPON SYSERR
END-IF

Chapter 7 - PROCEDURE DIVISION 31 May 2018

GnuCOBOL 3.0 rcl [03May2018] Programmer’s Guide 255

7.8.2. ADD

7.8.2.1. ADD TO

{ ADD TO Syntax]

ADD { literal-1 }...
~~~ { identifier-1 }

TO { identifier-2
[ ROUNDED [ MODE IS { AWAY-FROM-ZERO
~~~~~~~ ———— [ R

(-
[

13,

(-

-~
g
=
=
ja]
—
o8
H
|_]
]
o
L B L= 2 A BT S SR S

This format of the "ADD" statement generates an intermediate arithmetic sum of the values of
all <identifier-1> and <literal-1>) items. The value of each <identifier-2> will be replaced, in
turn, by the sum of that <identifier-2>s value and the intermediate sum.

1. The reserved words "IS" and "ON" are optional and may be included, or not, at the dis-
cretion of the programmer. The presence or absence of these words has no effect upon the
program.

2. Both <identifier-1> and <identifier-2> must be numeric unedited data items while <literal-
1> must be a numeric literal.

3. An <identifier-1> data item may also be coded as an <identifier-2> — note, however, that
the value of such a data item will therefore be included twice in the result.

4. The contents of each <identifier-1> will remain unchanged by this statement.

5. The optional "ROUNDED" (see [ROUNDED)], page 237) clause available to each <identifier-2>

31 May 2018 Chapter 7 - PROCEDURE DIVISION

256 GnuCOBOL 3.0 rcl [03May2018] Programmer’s Guide

will control how non-integer results will be saved.

6. The optional "ON SIZE ERROR" and "NOT ON SIZE ERROR" clauses may be used to detect
and react to the failure or success, respectively, of an attempt to perform a calculation. In
this case, failure is defined as being an <identifier-2> with an insufficient number of digit
positions available to the left of any implied decimal point. See [ON SIZE ERROR + NOT
ON SIZE ERROR], page 237, for additional information.

Chapter 7 - PROCEDURE DIVISION 31 May 2018

GnuCOBOL 3.0 rcl [03May2018] Programmer’s Guide 257

7.8.2.2. ADD GIVING

{ ADD GIVING Syntax

ADD { literal-1 F.o..
~~~ { identifier-1 }

[ TO identifier-2 ]

GIVING { identifier-3

[ ROUNDED [ MODE IS { AWAY-FROM-ZERO 113
””””””” T 2 }
{ NEAREST-AWAY-FROM-ZERO }
{ " }
{ NEAREST-EVEN }
}
{ NEAREST-TOWARD-ZERO }
{ " m e }
{ PROHIBITED }
2 S }
{ TOWARD-GREATER }
2 }
{ TOWARD-LESSER }
{ " }
{ TRUNCATION }

[ NOT ON SIZE ERROR imperative-statement-2 ]

[ END-ADD ]

This format of the "ADD" statement generates the arithmetic sum of the values of all <identifier-
1>, <literal-1>) and <identifier-2> (if any) items and then saves that sum to each <identifier-3>.

1. The reserved words "IS" and "ON" are optional and may be included, or not, at the dis-
cretion of the programmer. The presence or absence of these words has no effect upon the
program.

2. Both <identifier-1> and <identifier-2> must be numeric unedited data items while <literal-
1> must be a numeric literal; <identifier-3> may be either a numeric or numeric edited data
item.

3. An <identifier-1> or <identifier-2> data item may be used as an <identifier-3>, if desired.

4. The contents of each <identifier-1> and <identifier-2> will remain unchanged by this state-
ment, unless they happen to also be specified as an <identifier-3>.

5. The current value in each <identifier-3> at the start of the statement’s execution is irrele-

31 May 2018 Chapter 7 - PROCEDURE DIVISION



258 GnuCOBOL 3.0 rcl [03May2018] Programmer’s Guide

vant, since the contents of each <identifier-3> will simply be replaced with the computed
sum.

6. The optional "ROUNDED" (see [ROUNDED)], page 237) clause available to each <identifier-3>
will control how non-integer results will be saved.

7. The optional "ON SIZE ERROR" and "NOT ON SIZE ERROR" clauses may be used to detect
and react to the failure or success, respectively, of an attempt to perform a calculation. In
this case, failure is defined as being an <identifier-3> with an insufficient number of digit
positions available to the left of any implied decimal point. See [ON SIZE ERROR + NOT
ON SIZE ERROR], page 237, for additional information.

Chapter 7 - PROCEDURE DIVISION 31 May 2018



GnuCOBOL 3.0 rcl [03May2018] Programmer’s Guide 259

7.8.2.3. ADD CORRESPONDING

[

ADD CORRESPONDING Syntax

ADD CORRESPONDING identifier-1

TO identifier-2
[ ROUNDED [ MODE IS { AWAY-FROM-ZERO
~~~~~~~ e { e

o

~
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
(W)

-~
H
R
R
R
H
R
H
H
R
R
S R N E l a a aA —

This format of the "ADD" statement generates code equivalent to individual "ADD TO0" (see [ADD
TO], page 255) statements for corresponding matches of data items found subordinate to the
two identifiers.

. The reserved words "IS" and "ON" are optional and may be included, or not, at the dis-

cretion of the programmer. The presence or absence of these words has no effect upon the
program.

Both <identifier-1> and <identifier-2> must be group items.

See [CORRESPONDING], page 234, for information on how corresponding matches will be
found between <identifier-1> and <identifier-2>.

The optional "ROUNDED" (see [ROUNDED)], page 237) clause available to each <identifier-3>
will control how non-integer results will be saved.

The optional "ON SIZE ERROR" and "NOT ON SIZE ERROR" clauses may be used to detect
and react to the failure or success, respectively, of an attempt to perform a calculation. In
this case, failure is defined as being an <identifier-3> with an insufficient number of digit

31 May 2018 Chapter 7 - PROCEDURE DIVISION

260 GnuCOBOL 3.0 rcl [03May2018] Programmer’s Guide

positions available to the left of any implied decimal point. See [ON SIZE ERROR + NOT
ON SIZE ERROR], page 237, for additional information.

Chapter 7 - PROCEDURE DIVISION 31 May 2018

GnuCOBOL 3.0 rcl [03May2018] Programmer’s Guide 261

7.8.3. ALLOCATE

[

ALLOCATE Syntax

ALLOCATE { expression-1 CHARACTERS } [{ INITIALIZED }]

{ identifier-1 ~~77 777" Yy { e }

[RETURNING identifier-2] =~~~ ~~~~~~~~

The "ALLOCATE" statement is used to dynamically allocate memory at run-time.

. The reserved words "INITIALIZED" and "INITIALISED" are interchangeable.

Both <identifier-1> and "RETURNING <identifier-2>" may not be specified in the same
statement.

If used, <expression-1> must be an arithmetic expression with a non-zero positive integer
value.

If used, <identifier-1> should be an 01-level item defined in working-storage or local-storage
with the "BASED" (see [BASED], page 154) attribute. It may be an 01 item defined in the
linkage section without the "BASED" attribute, but using such a data item is not recom-
mended.

If used, <identifier-2> should be a "POINTER" (see [USAGE], page 210) data item.

The optional "RETURNING" clause will return the address of the allocated memory block
into the specified "USAGE POINTER" <identifier-2> data item. When this option is used,
knowledge of the originally-requested size of the allocated memory block will be retained
by the program in case a "FREE" (see [FREE], page 295) statement is ever issued against
<identifier-2>.

When the <identifier-1> option is used in conjunction with "INITIALIZED" (or it’s inter-
nationalized alternative "INITIALISED"), the allocated memory block will be initialized
as if an "INITIALIZE <identifier-1> WITH FILLER ALL TO VALUE THEN TO DEFAULT"
(see [INITTALIZE], page 303) were executed.

When the "<expression-1> CHARACTERS" option is used, "INITIALIZED" will initialize the
allocated memory block to binary zeros. If "INITIALIZED" is not used, the initial contents
of allocated memory will be left to whatever rules of memory allocation are in effect for the
operating system the program is running under.

. There are two basic ways in which this statement is used. The simplest is:

ALLOCATE My-0O1-Item

With this form, a block of storage equal in size to the defined size of My-01-Item (which
must have been defined with the "BASED" attribute) will be allocated. The address of that
block of storage will become the base address of My-01-Item so that it and its subordinate
data items become usable within the program.

A second (and equivalent) approach is:

31 May 2018 Chapter 7 - PROCEDURE DIVISION

262 GnuCOBOL 3.0 rcl [03May2018] Programmer’s Guide

ALLOCATE LENGTH OF My-0O1-Item CHARACTERS RETURNING The-Pointer
SET ADDRESS OF My-01-Item TO The-Pointer

10. Referencing a "BASED" data item either before its storage has been allocated or after its
storage has been released (via the "FREE" statement) will lead to "unpredictable results".
That’s how reference manuals and standards specifications talk about this situation. In
the author’s experience, the results are all too predictable — the program aborts from an
attempt to reference an unallocated area of memory.

Chapter 7 - PROCEDURE DIVISION 31 May 2018

GnuCOBOL 3.0 rcl [03May2018] Programmer’s Guide 263

7.8.4. ALTER

[

ALTER Syntax

ALTER procedure-name-1 TO PROCEED TO procedure-name-2

The "ALTER" statement was used in the early years of the COBOL language to edit the object
code of a program at execution time, changing a "GO T0" (see [Simple GO TO], page 299)
statement to branch to a spot in the program different than where the "GO TO" statement was
originally compiled for.

1.

The reserved words "PROCEED" and "T0" (the one after "PROCEED") are optional and may
be included, or not, at the discretion of the programmer. The presence or absence of these
words has no effect upon the program.

<procedure-name-1> must contain only a single statement, and that statement must be a
simple "GO TO".

The effect of this statement will be as if the generated machine-language code for the "GO
TO" statement in <procedure-name-1> is changed so that the "GO TO" statement now trans-
fers control to <procedure-name-2>, rather than to whatever procedure name was specified
in the program source code.

Support for the "ALTER" verb has been added to GnuCOBOL for the purpose of enabling
GnuCOBOL to pass those National Institute of Standards and Technology (NIST) tests for
the COBOL programming language that require support for "ALTER".

Because of the catastrophic effect this statement has on program readability and therefore
the programmer’s ability to debug problems with program logic, the use of "ALTER" in new
programs is STRONGLY discouraged.

31 May 2018 Chapter 7 - PROCEDURE DIVISION

264 GnuCOBOL 3.0 rcl [03May2018] Programmer’s Guide

7.8.5. CALL

{ CALL Syntax
CALL [{ STDCALL } 1 { literal-1 }
A B } { identifier-1 }

{ STATIC 3
{ = }
{ mnemonic-name-1 }

[USING CALL-Argument...]

[NOT ON OVERFLOW|EXCEPTION imperative-statement-2]

[END-CALL]
[CALL Argument Syntax
[BY { REFERENCE }]
{ 7o +
{ CONTENT }
{ }
{ VALUE }
{ OMITTED }
{ }
{ [UNSIGNED] [SIZE IS { AUTO } 1 [{ literal-2 T3
”””””””” et { =~~~ } { identifier-2 }
{ DEFAULT }
{ }
{ integer-1 }

The "CALL" statement is used to transfer control to a subroutine. See [Sub-Programming],
page 609, for the specifics of using subprograms with GnuCOBOL programs.

1. The reserved words "BY", "IS" and "ON" are optional and may be included, or not, at the
discretion of the programmer. The presence or absence of these words has no effect upon
the program.

2. The reserved words "EXCEPTION" and "OVERFLOW" are interchangeable.
3. The reserved words "GIVING" and "RETURNING" are interchangeable.

Chapter 7 - PROCEDURE DIVISION 31 May 2018

GnuCOBOL 3.0 rcl [03May2018] Programmer’s Guide

265

4. The expectation is that the subroutine will eventually return control back to the calling
program, at which point the CALLing program will resume execution starting with the
statement immediately following the "CALL". Subprograms are not required to return to
their callers, however, and are free to halt program execution if they wish.

5. The <mnemonic-name-1> / "STATIC" / "STDCALL" option, if used, affects the linkage con-
ventions that will be used to the subroutine being called, as follows:

A. The "STATIC" option will cause the linkage to the subroutine to be performed in such

a way as to require the subroutine to be statically-linked with the calling program.
Note that this enables static-linking to be used on a subroutine-by-subroutine selective
basis.

. The "STDCALL" option allows system-standard calling conventions (as opposed to Gnu-
COBOL calling conventions) to be used when calling a subroutine. The definition
of what constitutes "system standard" may vary from operating system to operating
system. Use of this requires special knowledge about the linkage requirements of sub-
routines you are intending to "CALL". Subroutines written in GnuCOBOL do not need
this option.

. The <mnemonic-name-1> option allows a custom-defined calling convention to be used.
Such mnemonic names are defined using the "CALL-CONVENTION" (see [SPECIAL-
NAMES], page 90) clause. That clause associates a decimal integer value with
<mmnemonic-name-1> such that the individual bits set on or off in the binary equiva-
lent of the integer affect linkage to the subroutine as described in the following chart.
Those rows of the chart marked with a "No" in the "Supported" column represent bit
positions (switch settings) in the integer value that are currently accepted (to provide
compatibility to other COBOL implementations) if coded, but are otherwise unsup-
ported.

Note that bit 0 is the right-most bit in the binary value.

Bit Supported Meaning if 0 Meaning if 1

0 No Arguments will be passed in right- Arguments will be passed in left-to-
to-left sequence right sequence.

1 No The calling program will flush pro- The called program (subroutine)
cessed arguments from the argu- will flush processed arguments from
ment stack. the argument stack.

2 Yes The "RETURN-CODE" special register The "RETURN-CODE" special reg-
(see [Special Registers], page 240) ister will not be updated (but
will be updated in addition to any "RETURNING" or "GIVING" data
any "RETURNING" or "GIVING" data item still will).
item.

3 Yes If CALL "literal" is used, the sub- If CALL "literal" is used, the sub-

31 May 2018

routine will be located and linked in
with the calling program at compile
time or may be dynamically located
and loaded at execution time, de-
pending on compiler switch settings
and operating system capabilities.

routine can only be located and
linked with the calling program at
compilation time.

Chapter 7 - PROCEDURE DIVISION

266

10.

GnuCOBOL 3.0 rcl [03May2018] Programmer’s Guide

4 No 0OS/2 "OPTLINK" conventions 0OS/2 "OPTLINK" conventions will
will not be used to CALL the be used to CALL the subprogram.
subprogram.

5 No Windows 16-bit "thunking" will not Windows 16-bit "thunking" will be
be in effect. used to call the subroutine as a

DLL.

6 Yes The STDCALL convention will not The STDCALL convention,

be used. quired to use the Microsoft Win32

API, will be used.

Using the "STDCALL" option on a "CALL" statement is equivalent to using
"CALL-CONVENTION 8" (only bit 3 set).

Using the "STATIC" option on a "CALL" statement is equivalent to using "CALL
CONVENTION 64" (only bit 6 set).

The value of <literal-1> or <identifier-1> is the entry-point of the subprogram you wish to
call.

When you call a subroutine using <identifier-1>, you are forcing the runtime system to call
a dynamically-loadable subprogram. The contents of <identifier-1> will be the entry-point
name within that module. If this is the first call to any entry-point within the module being
made at run-time, the contents of <identifier-1> must be the primary entry-point name of
the module (which must also match the filename, minus any OS-mandated extension) of
the executable file comprising the module).

You can force the GnuCOBOL runtime system to pre-load all dynamically-loaded modules
that could ever be called by the program, at the time the program starts executing. This
is accomplished through the use of the "COB_PRE_LOAD" run-time environment variable
(see [Run Time Environment Variables|, page 596). If used, this will only pre-load those
modules invoked via "CALL <Iliteral-1>", as the runtime contents of <identifier-1> cannot
be predicted.

If the subprogram being called is a GnuCOBOL program, and if that program had
the "INITIAL" (see [IDENTIFICATION DIVISION], page 83) attribute specified on its
"PROGRAM-ID" clause, all of the subprogram’s data division data will be restored to its ini-
tial state each time the subprogram is executed, regardless of which entry-point within the
subprogram is being referenced.

This [re]-initialization behaviour will always apply to any subprogram’s local-storage (if
any), regardless of the use (or not) of "INITIAL".

The "USING" clause defines a list of arguments that may be passed from the calling program
to the subprogram. The manner in which any given argument is passed to the subroutine
depends upon the "BY" clause (if any) coded (or implied) for that argument, as follows:

A. "BY REFERENCE" passes the address of the argument to the subprogram. If the subpro-
gram changes the contents of that argument, the change will be "visible" to the calling
program.

B. "BY CONTENT" passes the address of a copy of the argument to the subprogram. If the
subprogram changes the value of such an argument, the change only affects the copy
back in the calling program, not the original version.

C. "BY VALUE" passes the actual numeric value of the literal or identifiers contents as the
argument. This feature exists to provide compatibility with C, C++ and other languages

Chapter 7 - PROCEDURE DIVISION 31 May 2018

GnuCOBOL 3.0 rcl [03May2018] Programmer’s Guide 267

and would not normally be used when calling GnuCOBOL subprograms. Only numeric
literals or numeric data items should be passed in this manner.

D. If an argument lacks a "BY" clause, the most-recently encountered "BY" specification
on that "CALL" statement will be assumed. If the first argument specified on a "CALL"
lacks a "BY" clause, "BY REFERENCE" will be assumed.

11. No more than 251 arguments may be passed to a subroutine, unless the GnuCOBOL com-
piler was built with a specifically different argument limit specified for it. If you have access
to the GnuCOBOL source code, you may adjust this limit by changing the value of the
"COB_MAX_FIELD_PARAMS" in the "call.c" file (found in the "libcob" fOlder) as well as
the last shown '#if MAX_CALL_FIELD_PARAMS’ statement before you run "make" to
build the compiler and run-time library.

12. The "RETURNING" clause allows you to specify a numeric data item into which the subroutine
should return a numeric value. If you use this clause on the "CALL", the subroutine should
include a "RETURNING" (see [PROCEDURE DIVISION RETURNING], page 228) clause
on its procedure division header. Of course, a subroutine may pass a value of any kind back
in any argument passed "BY REFERENCE".

13. The optional "ON OVERFLOW" and "NOT ON OVERFLOW" clauses (Or "ON EXCEPTION" and
"NOT ON EXCEPTION" — they are interchangeable) may be used to detect and react to
the failure or success, respectively, of an attempt to "CALL" the subroutine. Failure, in this
context, is defined as the inability to either locate or load the object code of the subroutine at
execution time. See [ON OVERFLOW + NOT ON OVERFLOW], page 236, for additional

information.

31 May 2018 Chapter 7 - PROCEDURE DIVISION

268 GnuCOBOL 3.0 rcl [03May2018] Programmer’s Guide

7.8.6. CANCEL

{ CANCEL Syntax

CANCEL { literal-1 ...
”””””” { identifier-1 }

The "CANCEL" statement unloads the dynamically-loadable subprogram module containing the
entry-point specified as <literal-1> or <identifier-1> from memory.

1. If a dynamically-loadable module unloaded by the "CANCEL" statement is subsequently
re-executed, all data division storage for that module will once again be in it’s initial state.

2. Whether the "CANCEL" statement actually physically unloads a dynamically-loaded mod-
ule or simply marks it as logically-unloaded depends on the use and value of the
"COB_PHYSICAL_CANCEL" run-time environment variable (see [Run Time Environment Vari-
ables], page 596).

Chapter 7 - PROCEDURE DIVISION 31 May 2018

GnuCOBOL 3.0 rcl [03May2018] Programmer’s Guide 269

7.8.7. CLOSE

[

CLOSE Syntax

CLOSE { file-name-1 [{ REEL|UNIT [FOR REMOVAL] } 1 }...

i { -~~~ v T }
{ WITH LOCK }
{ T }
{ WITH NO REWIND }

The "REEL", "LOCK" and "NO REWIND" clauses are syntactically recognized but are otherwise
non-functional, except for the "CLOSE. . .NO REWIND" statement, which will generate a file status
of 07 rather than the usual 00 (but take no other action).

The "CLOSE" statement terminates the program’s access to the specified file(s).

1.

The reserved words "FOR" and "WITH" are optional and may be included, or not, at the
discretion of the programmer. The presence or absence of these words has no effect upon
the program.

The reserved words "REEL" and "UNIT" are interchangeable.

The "CLOSE" statement may only be executed against files that have been successfully
opened.

A successful "CLOSE" will write any remaining unwritten record buffers to the file (similar
to an "UNLOCK" statement (see [UNLOCK], page 374)) and release any file locks for the file,
regardless of open mode. A closed file will then be no longer available for subsequent 1/0
statements until it is once again OPENED.

When a "ORGANIZATION LINE SEQUENTIAL" (See [ORGANIZATION LINE SEQUEN-
TIALJ, page 108) or "LINE ADVANCING" (see [LINE ADVANCING], page 14) file is closed,
a final delimiter sequence will be written to the file to signal the termination point of the
final data record in the file. This will only be necessary if the final record written to the
file was written with the "AFTER ADVANCING" (see [WRITE], page 379) option.

31 May 2018 Chapter 7 - PROCEDURE DIVISION

270 GnuCOBOL 3.0 rcl [03May2018] Programmer’s Guide

7.8.8. COMMIT

{ COMMIT Syntax

COMMIT

The "COMMIT" statement performs an "UNLOCK" against every currently-open file, but does not
close any of the files.

See the "UNLOCK" statement (see [UNLOCK], page 374) for additional details.

Chapter 7 - PROCEDURE DIVISION 31 May 2018

GnuCOBOL 3.0 rcl [03May2018] Programmer’s Guide 271

7.8.9. COMPUTE

{ COMPUTE Syntax j

COMPUTE { identifier-1
[ROUNDED [MODE IS { AWAY-FROM-ZERO
~~~~~~~ ~ o~ { B N e e e

—
(.-

-~
=
=
=
5
52
(7}
7
=
=
=
D
q
=
o
o
N
£
=
o

Yo

-~
R
R
R
R
R
R
R
R
R
R
s A i I e LS L S RV

The "COMPUTE" statement provides a means of easily performing complex arithmetic opera-
tions with a single statement, instead of using cumbersome and possibly confusing sequences of
"ADD", "SUBTRACT", "MULTIPLY" and "DIVIDE" statements. "COMPUTE" also allows the use of
exponentiation — an arithmetic operation for which no other statement exists in COBOL.

1. The reserved words "IS" and "ON" are optional and may be included, or not, at the dis-
cretion of the programmer. The presence or absence of these words has no effect upon the
program.

2. The reserved word "EQUAL" is interchangeable with the use of "=".
3. Each <identifier-1> must be a numeric or numeric-edited data item.

4. The optional "ROUNDED" (see [ROUNDED], page 237) clause available to each <identifier-1>
will control how non-integer results will be saved.

5. See [Arithmetic Expressions|, page 42, for more information on arithmetic expressions.

6. The optional "ON SIZE ERROR" and "NOT ON SIZE ERROR" clauses may be used to detect
and react to the failure or success, respectively, of an attempt to perform a calculation. In

31 May 2018 Chapter 7 - PROCEDURE DIVISION



272 GnuCOBOL 3.0 rcl [03May2018] Programmer’s Guide

this case, failure is defined either as having an <identifier-3> with an insufficient number
of digit positions available to the left of any implied decimal point or attempting to divide
by zero. See [ON SIZE ERROR + NOT ON SIZE ERROR], page 237, for additional

information.

Chapter 7 - PROCEDURE DIVISION 31 May 2018



GnuCOBOL 3.0 rcl [03May2018] Programmer’s Guide 273

7.8.10. CONTINUE

{ CONTINUE Syntax j

CONTINUE

The "CONTINUE" statement is a no-operation statement that may be coded anywhere an imper-
ative statement (see [Imperative Statement]|, page 638) may be coded.

1. The "CONTINUE" statement has no effect on the execution of the program.

2. This statement (perhaps in combination with an appropriate comment or two) makes a
convenient "place holder" — particularly in "ELSE" (see [IF], page 302) or "WHEN" (see
[EVALUATE], page 288) clauses where no code is currently expected to be needed, but a
place for code to handle the conditions in question is to be reserved in case it’s ever needed.

31 May 2018 Chapter 7 - PROCEDURE DIVISION



274

GnuCOBOL 3.0 rcl [03May2018] Programmer’s Guide

7.8.11. DELETE

[

DELETE Syntax

DELETE file-name-1 RECORD

The "DELETE" statement logically deletes a record from a COBOL file.

1.

The reserved words "KEY" and "RECORD" are optional and may be included, or not, at the
discretion of the programmer. The presence or absence of these words has no effect upon
the program.

The "ORGANIZATION" of <file-name-1> cannot be "ORGANIZATION LINE SEQUENTIAL" (See
[ORGANIZATION LINE SEQUENTIAL], page 108).

The <file-name-1> file cannot be a sort/merge work file (a file described using a "SD" (see
[File/Sort-Description|, page 121)).

For files in the "SEQUENTIAL" access mode, the last input-output statement executed against
<file-name-1> prior to the execution of the "DELETE" statement must have been a success-
fully executed sequential-format "READ" statement (see [Sequential READ], page 330). That
"READ" will therefore identify the record to be deleted.

If <file-name-1> is a "RELATIVE" file whose "ACCESS MODE" (see [ORGANIZATION RELA-
TIVE], page 110) is either "RANDOM" or "DYNAMIC", the record to be deleted is the one whose
relative record number is currently the value of the field specified as the files "RELATIVE
KEY" in it’s "SELECT" statement.

If <file-name-1> is an "INDEXED" file whose "ACCESS MODE" (sece [ORGANIZATION IN-
DEXED], page 112) is "RANDOM" or "DYNAMIC", the record to be deleted is the one whose
primary key is currently the value of the field specified as the "RECORD KEY" in the file’s
"SELECT" statement.

The optional "INVALID KEY" and "NOT INVALID KEY" clauses may be used to detect and
react to the failure or success, respectively, of an attempt to delete a record. See [INVALID
KEY + NOT INVALID KEY], page 235, for additional information.

No "INVALID KEY" or "NOT INVALID KEY" clause may be specified for a file who’s "ACCESS
MODE IS SEQUENTIAL".

Chapter 7 - PROCEDURE DIVISION 31 May 2018



GnuCOBOL 3.0 rcl [03May2018] Programmer’s Guide 275

7.8.12. DISPLAY

7.8.12.1. DISPLAY UPON device

[ DISPLAY UPON device Syntax }

DISPLAY { literal-1 }.o..
””””””” { identifier-1 %}
[ UPON mnemonic-name-1 ]

[ WITH NO ADVANCING ]

This format of the "DISPLAY" statement displays the specified identifier contents and/or literal
values on the system output device specified via the "UPON" clause.

1. The reserved words "ON" and "WITH" are optional and may be included, or not, at the
discretion of the programmer. The presence or absence of these words has no effect upon
the program.

2. If no "UPON" clause is specified, "UPON CONSOLE" will be assumed. If the "UPON" clause is
specified, <mnemonic-name-1> must be one of the built-in output device names "CONSOLE",
"PRINTER", "STDERR", "STDOUT", "SYSERR", "SYSLIST", "SYSLST" or "SYSOUT" or a
mnemonic name assigned to one of those devices via the "SPECIAL-NAMES" (see [SPECIAL-
NAMES], page 90) paragraph.

When displaying upon the "STDERR" or "SYSERR" devices or to a <mnemonic-name-1>
attached to one of those two devices, the output will be written to output pipe #2, which
will normally cause the output to appear in the console output window. You may, if desired,
redirect that output to a file by appending "2> filename" to the end of the command
that executes the program. This applies to both Windows (any type) or Unix versions of
GnuCOBOL.

When displaying upon the "CONSOLE", "PRINTER", "STDOUT", "SYSLIST", "SYSLST" or
"SYSOUT" devices or to a <mnemonic-name-1> attached to one of them, the output will be
written to output pipe #1, which will normally cause the output to appear in the console
output window. You may, if desired, redirect that output to a file by appending "1>
filename" or simply "> filename" to the end of the command that executes the program.
This applies to both Windows (any type) or Unix versions of GnuCOBOL.

3. The "NO ADVANCING" clause, if used, will suppress the carriage-return / line-feed sequence
that is normally added to the end of any console display.

4. The optional "ON EXCEPTION" and "NOT ON EXCEPTION" clauses may be used to detect
and react to the failure or success, respectively, of an attempt to display output to the

31 May 2018 Chapter 7 - PROCEDURE DIVISION



276 GnuCOBOL 3.0 rcl [03May2018] Programmer’s Guide

specified device. See [ON EXCEPTION + NOT ON EXCEPTION], page 236, for additional

information.

Chapter 7 - PROCEDURE DIVISION 31 May 2018



GnuCOBOL 3.0 rcl [03May2018] Programmer’s Guide

7.8.12.2. DISPLAY UPON COMMAND-LINE

277

{ DISPLAY UPON COMMAND-LINE Syntax

DISPLAY { literal-1 }.o..
””””””” { identifier-1 }
UPON { ARGUMENT-NUMBER | COMMAND-LINE }
Temm { Trmmmmm T s s s mmmsmm e }
[ ON EXCEPTION imperative-statement-1 ]

[ NOT ON EXCEPTION imperative-statement-2 ]

[ END-DISPLAY ]

This form of the "DISPLAY" statement may be used to specify the command-line argument num-
ber to be retrieved by a subsequent "ACCEPT FROM ARGUMENT-VALUE" statement (see [ACCEPT
FROM COMMAND-LINE], page 244) or to specify a new value for the command-line arguments

themselves.

1. The reserved word "ON" is optional and may be included, or not, at the discretion of the

programmer. The presence or absence of this word has no effect upon the program.

. By displaying a numeric integer value UPON "ARGUMENT-NUMBER", you will specify which
argument (by its relative number) will be retrieved by a subsequent "ACCEPT FROM
ARGUMENT-VALUE" statement.

. Executing a "DISPLAY UPON COMMAND-LINE" will influence subsequent "ACCEPT FROM
COMMAND-LINE" statements (which will then return the value you displayed), but will not
influence subsequent "ACCEPT FROM ARGUMENT-VALUE" statements — these will continue
to return the original program execution parameters.

. The optional "ON EXCEPTION" and "NOT ON EXCEPTION" clauses may be used to detect
and react to the failure or success, respectively, of an attempt to display output to the
specified item. See [ON EXCEPTION + NOT ON EXCEPTION], page 236, for additional
information.

31 May 2018 Chapter 7 - PROCEDURE DIVISION



278

GnuCOBOL 3.0 rcl [03May2018] Programmer’s Guide

7.8.12.3. DISPLAY UPON ENVIRONMENT-NAME

[

DISPLAY UPON ENVIRONMENT-NAME Syntax j
DISPLAY { literal-1 }... UPON { ENVIRONMENT-VALUE }
””””””” { identifier-1 } R e &

{ ENVIRONMENT-NAME }

This form of the "DISPLAY" statement can be used to create or modify environment variables.

1.

The reserved word "ON" is optional and may be included, or not, at the discretion of the
programmer. The presence or absence of this word has no effect upon the program.

To create or change an environment variable will require two "DISPLAY" statements. The
following example sets the environment variable "MY_ENV_VAR" to a value of "Demon-
stration Value":

DISPLAY "MY_ENV_VAR" UPON ENVIRONMENT-NAME

DISPLAY "Demonstration Value" UPON ENVIRONMENT-VALUE
Environment variables created or changed from within GnuCOBOL programs will be avail-
able to any sub-shell processes spawned by that program (i.e. "CALL ’SYSTEM’" (see
[SYSTEM], page 551)) but will not be known to the shell or console window that started
the GnuCOBOL program.

Consider using "SET ENVIRONMENT" (see [SET ENVIRONMENT], page 345) in lieu of
"DISPLAY" to set environment variables as it is much simpler.

The optional "ON EXCEPTION" and "NOT ON EXCEPTION" clauses may be used to detect
and react to the failure or success, respectively, of an attempt to display output to the
specified item. See [ON EXCEPTION + NOT ON EXCEPTION], page 236, for additional
information.

Chapter 7 - PROCEDURE DIVISION 31 May 2018



GnuCOBOL 3.0 rcl [03May2018] Programmer’s Guide 279

7.8.12.4. DISPLAY screen-data-item

[ DISPLAY screen-data-item Syntax

DISPLAY identifier-1 [ UPON CRT|CRT-UNDER ]

[ AT { | LINE NUMBER { integer-1 } I} 1]
L] T { identifier-2 } | }
{1 (5
{ | COLUMN|POSITION NUMBER { integer-2 1} | }
{ | 777y e { identifier-3 } | }
{ }
{ { integer-3 } }
{ { identifier-4 } }

[ WITH [ DISPLAY-Attribute ]...
[ SCROLL { UP } [ { integer-4 } LINE|LINES ] 1]
”””””” {~" } { identifier-5 }
{ DOwN }
[ TIMEQUT|TIME-OUT AFTER { integer-5  } ]
””””””””””””””” { identifier-6 }
[ CONVERSION 1] 1]

The "UPON CRT", "UPON CRT-UNDER" and "CONVERSION" clauses are syntactically recognized
but are otherwise non-functional. They are supported to provide compatibility with COBOL
source written for other COBOL implementations.

This format of the "DISPLAY" statement presents data onto a formatted screen.

1. The reserved words "AFTER", "LINE", "LINES", "NUMBER" and "ON" are optional and may
be included, or not, at the discretion of the programmer. The presence or absence of these
words has no effect upon the program.

The reserved words "COLUMN" and "POSITION" are interchangeable.
The reserved words "LINE" and "LINES" are interchangeable.
The reserved words "TIMEQOUT" and "TIME-QUT" are interchangeable.

If <identifier-1> is defined in the "SCREEN SECTION" (see [SCREEN SECTION], page 140),
any "AT", <Attribute-Specification> and "WITH" clauses will be ignored. All field definition,

ook N

31 May 2018 Chapter 7 - PROCEDURE DIVISION



280 GnuCOBOL 3.0 rcl [03May2018] Programmer’s Guide

cursor positioning and screen control will occur as a result of the screen section definition
of <identifier-1>.

6. The following points apply if <identifier-1> is not defined in the screen section:

A. The purpose of the "AT" clause is to define where on the screen <identifier-1> should
be displayed. See [ACCEPT screen-data-item], page 246, for additional information.

B. The purpose of the "WITH" clause is to define the visual attributes that should be
applied to <identifier-1> when it is displayed on the screen as well as other presentation-
control characteristics.

C. The following < Attribute-Specification> clauses are allowed on the "DISPLAY" statement
— these are the same as those allowed for "SCREEN SECTION" data items. A particular
<Attribute-Specification> may be used only once in any "DISPLAY":

e "BACKGROUND-COLOR" (see [BACKGROUND-COLOR], page 153)
e "BEEP" (see [BEEP], page 155), "BELL" (see [BELL], page 156)
e "BLANK" (see [BLANK], page 157)

e "BLINK" (see [BLINK], page 159)

e "ERASE" (see [ERASE], page 164)

e "FOREGROUND-COLOR" (see [FOREGROUND-COLOR], page 167)
e "HIGHLIGHT" (see [HIGHLIGHT], page 172)

e "LOWLIGHT" (see [LOWLIGHT], page 179)

e "OVERLINE" (see [OVERLINE], page 185)

e "REVERSE-VIDEQ" (see [REVERSE-VIDEO], page 199)

e "UNDERLINE" (see [UNDERLINE], page 209)
D. See [ACCEPT screen-data-item], page 246, for additional information on the other
"WITH" clause options.

7. The optional "ON EXCEPTION" and "NOT ON EXCEPTION" clauses may be used to detect and
react to the failure or success, respectively, of the screen I/O attempt. See [ON EXCEP-
TION + NOT ON EXCEPTION], page 236, for additional information.

Chapter 7 - PROCEDURE DIVISION 31 May 2018



GnuCOBOL 3.0 rcl [03May2018] Programmer’s Guide 281

7.8.13. DIVIDE

7.8.13.1. DIVIDE INTO

[

DIVIDE INTO Syntax

DIVIDE { literal-1 } INTO { identifier-2

~~~~ { identifier-1 } "~~~

[ROUNDED [MODE IS { AWAY-FROM-ZERO N I T
””””””” T 2 }
{ NEAREST-AWAY-FROM-ZERO }
e }
{ NEAREST-EVEN }
S }
{ NEAREST-TOWARD-ZERO }
{ " }
{ PROHIBITED }
}
{ TOWARD-GREATER }
2 }
{ TOWARD-LESSER }
{ "mrrmmmm e }
{ TRUNCATION }

This format of the "DIVIDE" statement will divide a numeric value (specified as a literal or
numeric data item) into one or more numeric data items, replacing the value in each of those
data items with the result(s).

1.

The reserved words "IS" and "ON" are optional and may be included, or not, at the dis-
cretion of the programmer. The presence or absence of these words has no effect upon the
program.

Both <identifier-1> and <identifier-2> must be numeric unedited data items and <literal-1>
must be a numeric literal.

A division operation will be performed for each <identifier-2>, in turn. Each of the results
of those divisions will be saved to the corresponding <identifier-2> data item(s).

Should any <identifier-2> be an integer numeric data item, the result computed when
that <identifier-2> is divided by <literal-1> or <identifier-1> will also be an integer — any
remainder from that division will be discarded.

The optional "ROUNDED" (see [ROUNDED)], page 237) clause available to each <identifier-2>

31 May 2018 Chapter 7 - PROCEDURE DIVISION

282 GnuCOBOL 3.0 rcl [03May2018] Programmer’s Guide

will control how non-integer results will be saved.

6. The optional "ON SIZE ERROR" and "NOT ON SIZE ERROR" clauses may be used to detect
and react to the failure or success, respectively, of an attempt to perform a calculation. In
this case, failure is defined as being numeric truncation caused by an <identifier-2> with an
insufficient number of digit positions available to the left of any implied decimal point, or
an attempt to divide by zero. See [ON SIZE ERROR + NOT ON SIZE ERROR], page 237,

for additional information.

Chapter 7 - PROCEDURE DIVISION 31 May 2018

GnuCOBOL 3.0 rcl [03May2018] Programmer’s Guide 283

7.8.13.2. DIVIDE INTO GIVING

[

DIVIDE INTO GIVING Syntax j

DIVIDE { literal-1 } INTO { literal-2 } GIVING { identifier-3

~~~~ { identifier-1 } "~~~ { identifier-2 } ~~~°"~

[ ROUNDED [ MODE IS { AWAY-FROM-ZERO
~~~~~~~ e { e

-
—_
| —

Yoo

-~ A
=
M
L
v A
v M
2
v A
|
L
=]
o
LIS
|
v
(=
v O
=
L |
v N
v
(=)
O
Y

~
R
R
R
R
R
R
3
b3
R
R
R N e i s A

This format of the "DIVIDE" statement will divide one numeric value (specified as a literal or
numeric data item) into another numeric value (also specified as a literal or numeric data item)
and will then replace the contents of one or more receiving data items with the results of that
division.

1.

The reserved words "IS" and "ON" are optional and may be included, or not, at the dis-
cretion of the programmer. The presence or absence of these words has no effect upon the
program.

Both <identifier-1> and <identifier-2> must be numeric unedited data items while both
<identifier-3> and <identifier-4> must be numeric (edited or unedited) data items.

Both <literal-1> and <literal-2> must be numeric literals.
If the "REMAINDER" clause is coded, there may be only one <identifier-3> specified.

The result obtained when the value of <literal-2> or <identifier-2> is divided by the value of
<literal-1> or <identifier-1> is computed; this result is then moved into each <identifier-3>,
in turn, applying the rules defined by the "ROUNDED" (see [ROUNDED], page 237) clause
(if any) for that <identifier-3> to the move.

31 May 2018 Chapter 7 - PROCEDURE DIVISION

284 GnuCOBOL 3.0 rcl [03May2018] Programmer’s Guide

6. If a "REMAINDER" clause is specified, the value of the one and only <identifier-3> (as stated
earlier, if "REMAINDER" is specified there may only be a single <identifier-3> coded on the
statement) after it was assigned a value according to the previous rule will be multiplied by
the value of <literal-1> or <identifier-1>; that result is then subtracted from the value of
<literal-2> or <identifier-2> and that result is the value which is moved to <identifier-4>.

7. The optional "ON SIZE ERROR" and "NOT ON SIZE ERROR" clauses may be used to detect
and react to the failure or success, respectively, of an attempt to perform a calculation. In
this case, failure is defined as being an <identifier-2> with an insufficient number of digit
positions available to the left of any implied decimal point, or an attempt to divide by zero.
See [ON SIZE ERROR + NOT ON SIZE ERRORJ, page 237, for additional information.

Chapter 7 - PROCEDURE DIVISION 31 May 2018

GnuCOBOL 3.0 rcl [03May2018] Programmer’s Guide 285

7.8.13.3. DIVIDE BY GIVING

[

DIVIDE BY GIVING Syntax j

DIVIDE { literal-1 } BY { literal-2 } GIVING { identifier-3

~~~~ { identifier-1 } °~ { identifier-2 } ~~~°~~

[ ROUNDED [ MODE IS { AWAY-FROM-ZERO Y113
””””””” T { ~morrmm e }
{ NEAREST-AWAY-FROM-ZERO }
{ " }
{ NEAREST-EVEN }
{ e }
{ NEAREST-TOWARD-ZERO }
{ " }
{ PROHIBITED }
{ ~mmmmmeee }
{ TOWARD-GREATER }
{ ~mrrmm e }
{ TOWARD-LESSER }
{ "~ }
{ TRUNCATION }

This format of the "DIVIDE" statement will divide one numeric value (specified as a literal or
numeric data item) into another numeric value (also specified as a literal or numeric data item)
and will then replace the contents of one or more receiving data items with the results of that
division.

1.

The reserved words "IS" and "ON" are optional and may be included, or not, at the dis-
cretion of the programmer. The presence or absence of these words has no effect upon the
program.

Both <identifier-1> and <identifier-2> must be numeric unedited data items while both
<identifier-3> and <identifier-4> must be numeric (edited or unedited) data items.

Both <literal-1> and <literal-2> must be numeric literals.
If the "REMAINDER" clause is coded, there may be only one <identifier-3> specified.

The result obtained when the value of <literal-1> or <identifier-1> is divided by the value of
<literal-2> or <identifier-2> is computed; this result is then moved into each <identifier-3>,
in turn, applying the rules defined by the "ROUNDED" (see [ROUNDED], page 237) clause
(if any) for that <identifier-3> to the move.

31 May 2018 Chapter 7 - PROCEDURE DIVISION



286 GnuCOBOL 3.0 rcl [03May2018] Programmer’s Guide

6. If a "REMAINDER" clause is specified, the value of the one and only <identifier-3> (as stated
earlier, if "REMAINDER" is specified there may only be a single <identifier-3> coded on the
statement) after it was assigned a value according to the previous rule will be multiplied by
the value of <literal-2> or <identifier-2>; that result is then subtracted from the value of
<literal-1> or <identifier-1> and that result is the value which is moved to <identifier-4>.

7. The optional "ON SIZE ERROR" and "NOT ON SIZE ERROR" clauses may be used to detect
and react to the failure or success, respectively, of an attempt to perform a calculation. In
this case, failure is defined as being an <identifier-2> with an insufficient number of digit
positions available to the left of any implied decimal point, or an attempt to divide by zero.
See [ON SIZE ERROR + NOT ON SIZE ERRORJ, page 237, for additional information.

Chapter 7 - PROCEDURE DIVISION 31 May 2018



GnuCOBOL 3.0 rcl [03May2018] Programmer’s Guide 287

7.8.14. ENTRY

[

ENTRY Syntax

ENTRY literal-1 [ USING ENTRY-Argument... ]

ENTRY-Argument Syntax

[ BY { REFERENCE } ] identifier-1

{ e }
{ CONTENT }
{ }
{ VALUE }

The "ENTRY" statement is used to define an alternate entry-point into a subroutine, along with
the arguments that subroutine will be expecting.

1.

The reserved word "BY" is optional and may be included, or not, at the discretion of the
programmer. The presence or absence of this word has no effect upon the program.

You may not use an "ENTRY" statement in a nested subprogram, nor may you use it in any
form of user-defined function.

The "USING" clause defines the arguments the subroutine entry-point supports. This list
of arguments must match up against the "USING" clause of any "CALL" statement that will
be invoking the subroutine using this entry-point.

Fach < ENTRY-Argument> specified on the "ENTRY" statement must be defined in the link-
age section of the subroutine in which the "ENTRY" statement exists.

The <literal-1> value will specify the entry-point name of the subroutine. It must be
specified exactly on "CALL" statements (with regard to the use of upper- and lower-case
letters) as it is specified on the "ENTRY" statement.

The meaning of "REFERENCE", "CONTENT" and "VALUE" are the same as the equivalent
specifications on the "CALL" statement (see [CALL], page 264). Whatever specification will
be used for an argument on the "CALL" to this entry-point should match the specification
used in the corresponding < ENTRY-Argument>. The same rules regarding the presence or
absence of a "BY" clause on a "CALL" statement apply to the presence or absence of a "BY"
clause on the corresponding argument of the "ENTRY" statement.

31 May 2018 Chapter 7 - PROCEDURE DIVISION



288 GnuCOBOL 3.0 rcl [03May2018] Programmer’s Guide

7.8.15. EVALUATE

{ EVALUATE Syntax

EVALUATE Selection-Subject-1 [ ALSO Selection-Subject-2 ]...

{ { WHEN Selection-Object-1 [ ALSO Selection-Object-2 ] }...

[ imperative-statement-1 ] }...
[ WHEN OTHER

imperative-statement-other ]

[ END-EVALUATE ]

[ EVALUATE Selection Subject Syntax

P
R
R
R
H

expression-1
identifier-1
literal-1

S B R R A =]

P S

[ EVALUATE Selection Object Syntax

partial-expression-1

{ identifier-2 } ~~~~ ~vvTT” { identifier-3 }
{ literal-2 b { literal-3 T

pu
R
R
R
R
R
e B B R el i A el x.

{
{
{ { expression-2 } [ THRU|THROUGH { expression-3 } ]
{
{

The "EVALUATE" statement provides a means of defining processing that should take place under
any number of mutually-exclusive conditions.

1. The reserved words "THRU" and "THROUGH" are interchangeable.

Chapter 7 - PROCEDURE DIVISION 31 May 2018



GnuCOBOL 3.0 rcl [03May2018] Programmer’s Guide 289

2. There must be at least one "WHEN" clause (in addition to any "WHEN OTHER" clause) specified
on any "EVALUATE" statement.

3. There must be at least one <Selection-Subject> specified on the "EVALUATE" statement.
Any number of additional <Selection-Subject> clauses may be specified, using the "ALSQ"
reserved word to separate each from the prior.

4. Each "WHEN" clause (other than the "WHEN OTHER" clause, if any) must have the same
number of <Selection-Object> clauses as there are <Selection-Subject> clauses.

5. When using "THRU", the values on both sides of the "THRU" must be the same class (both
numeric, both alphanumeric, etc.).

6. A <partial-expression> is one of the following;:

A. A Class Condition without a leading <identifier-1> (see [Class Conditions|, page 46).
B. A Sign Condition without a leading <identifier-1> (see [Sign Conditions], page 48).

C. A Relation Condition with nothing to the left of the relational operator (see [Relation
Conditions|, page 50).
7. At execution time, each <Selection-Subject> on the "EVALUATE" statement will have its value
matched against that of the corresponding <Selection-Object> on a "WHEN" clause, in turn,
until:

A. A "WHEN" clause has each of its <Selection-Object>(s) successfully matched by the cor-
responding <Selection-Subject>; this will be referred to as the ’'Selected WHEN clause’.

B. The complete list of "WHEN" clauses (except for the "WHEN OTHER" clause, if any) has
been exhausted. In this case, there is no 'Selected WHEN Clause’.

8. If a ’Selected WHEN Clause’ was identified:

A. The <imperative-statement-1> (see [Imperative Statement|, page 638) immediately fol-
lowing the 'Selected WHEN Clause’ will be executed. If the ’'Selected WHEN Clause’
is lacking an <imperative-statement-1>, the first <imperative-statement-1> found after
any following "WHEN" clause will be executed.

B. Once the <imperative-statement-1> has been executed, or no <imperative-statement-
1> was found anywhere after the ’'Selected WHEN Clause’, control will proceed to
the statement following the "END-EVALUATE" or, if there is no "END-EVALUATE", the
first statement that follows the next period. If, however, the <imperative-statement-
1> included a "GO TO" statement, and that "GO TO" was executed, then control will
transfer to the procedure named on the "GO TO" instead.

9. If no 'Selected WHEN Clause’ was identified:

A. The "WHEN OTHER" clause’s <imperative-statement-other> will be executed, if such a
clause was coded.

B. Control will then proceed to the statement following the "END-EVALUATE" or the first
statement that follows the next period if there is no "END-EVALUATE". If however, the
<imperative-statement-other> included a "GO TO" statement, and that "GO TO0" was
executed, then control will transfer to the procedure named on the "GO TO" instead.

10. In order for a <Selection-Subject> to match the corresponding <Selection-Object> on a
"WHEN" clause, at least one of the following must be true:

A. The <Selection-Object> is "ANY"

31 May 2018 Chapter 7 - PROCEDURE DIVISION



290 GnuCOBOL 3.0 rcl [03May2018] Programmer’s Guide

B. The implied Relation Condition "<Selection-Subject> = <Selection Object>" is
TRUE — See [Relation Conditions], page 50, for the rules on how the comparison will
be made.

C. The value of the <Selection-Subject> falls within the range of values specified by the
"THRU" clause of the <Selection-Object>

D. If the <Selection-Object> is a <partial-expression>, then the conditional expression that
would be represented by coding "<Selection-Subject> <Selection-Object>" eval-
uates to TRUE

11. Here is a sample program that illustrates the EVALUATE statement.

IDENTIFICATION DIVISION.
PROGRAM-ID. DEMOEVALUATE.
DATA DIVISION.
WORKING-STORAGE SECTION.
01 Test-Digit PIC 9(1).
88 Digit-Is-0dd VALUE 1, 3, 5, 7, 9.
88 Digit-Is-Prime VALUE 1, 3, 5, 7.
PROCEDURE DIVISION.
P1. PERFORM UNTIL EXIT
DISPLAY "Enter a digit (0 Quits): "
WITH NO ADVANCING
ACCEPT Test-Digit
IF Test-Digit = 0
EXIT PERFORM
END-IF
EVALUATE Digit-Is-0dd ALSO Digit-Is-Prime
WHEN TRUE ALSO FALSE
DISPLAY Test-Digit " is ODD"
WITH NO ADVANCING
WHEN TRUE ALSO TRUE
DISPLAY Test-Digit " is PRIME"
WITH NO ADVANCING
WHEN FALSE ALSO ANY
DISPLAY Test-Digit " is EVEN"
WITH NO ADVANCING
END-EVALUATE
EVALUATE Test-Digit

WHEN < 5

DISPLAY " and it’s small too"
WHEN < 8

DISPLAY " and it’s medium too"
WHEN OTHER

DISPLAY " and it’s large too"
END-EVALUATE
END-PERFORM
DISPLAY "Bye!"
STOP RUN

Console output when run (user input follows the colons on the prompts for input):

Chapter 7 - PROCEDURE DIVISION 31 May 2018



GnuCOBOL 3.0 rcl [03May2018] Programmer’s Guide 291

Enter a digit (0 Quits): 1

1 is PRIME and it’s small too
Enter a digit (0 Quits): 2

2 is EVEN and it’s small too
Enter a digit (0 Quits): 3

3 is PRIME and it’s small too
Enter a digit (0 Quits): 4

4 is EVEN and it’s small too
Enter a digit (0 Quits): 5

5 is PRIME and it’s medium too
Enter a digit (0 Quits): 6

6 is EVEN and it’s medium too
Enter a digit (0 Quits): 7

7 is PRIME and it’s medium too
Enter a digit (0 Quits): 8

8 is EVEN and it’s large too
Enter a digit (0 Quits): 9

9 is 0DD and it’s large too
Enter a digit (0 Quits): O
Bye!

31 May 2018 Chapter 7 - PROCEDURE DIVISION



292 GnuCOBOL 3.0 rcl [03May2018] Programmer’s Guide

7.8.16. EXIT

{ EXIT Syntax

EXIT [ { PROGRAM
e { -

—_

-~
a®
=
[
23]
O
=
=
m
'®
N
Q
=
(23]
—_
O = B S L SOV SO A

The "EXIT" statement is a multi-purpose statement; it may provide a common end point for a
series of procedures, exit an in-line PERFORM, paragraph or section or it may mark the logical
end of a subprogram, returning control back to the calling program.

1. The "EXIT PROGRAM" statement is not legal anywhere within a user-defined function.
2. The "EXIT FUNCTION" statement cannot be used anywhere within a subroutine.

3. Neither "EXIT PROGRAM" nor "EXIT FUNCTION" may be used within a "USE GLOBAL" rou-
tine in "DECLARATIVES" (see [DECLARATIVES], page 230).

4. The following points describe the "EXIT" statement with none of the optional clauses:

A. When this form of an "EXIT" statement is used, it must be the only statement in the
procedure (paragraph or section) in which it occurs.

B. This usage of the "EXIT" statement simply provides a common "GO TO" end point
for a series of procedures, as may be seen in the following example:

01 Switches.
05 Input-File-Switch PIC X(1).
88 EOF-On-Input-File VALUE Y FALSE N.

SET EOF-On-Input-File TO FALSE.
PERFORM 100-Process-A-Transaction THRU 199-Exit
UNTIL EQF-On-Input-File.

100-Process-A-Transaction.
READ Input-File AT END
SET EOF-On-Input-File TO TRUE
GO TO 199-Exit
END-READ.
IF Input-Rec of Input-File = SPACES
GO TO 199-Exit x> IGNORE BLANK RECORDS!
END-IF.
<<KLprocess the record just read>>>
199-Exit.

Chapter 7 - PROCEDURE DIVISION 31 May 2018



GnuCOBOL 3.0 rcl [03May2018] Programmer’s Guide 293

EXIT.
C. In this case, the "EXIT" statement takes no other run-time action.

5. The following points apply to the "EXIT PARAGRAPH" and "EXIT SECTION" statements:

A. If an "EXIT PARAGRAPH" statement or "EXIT SECTION" statement resides in a para-
graph within the scope of a procedural "PERFORM" (see [Procedural PERFORM],
page 324), control will be returned back to the "PERFORM" for evaluation of any
"TIMES", "VARYING" and/or "UNTIL" clauses.

B. If an "EXIT PARAGRAPH" statement or "EXIT SECTION" statement resides outside the
scope of a procedural "PERFORM", control simply transfers to the first executable state-
ment in the next paragraph ("EXIT PARAGRAPH") or section ("EXIT SECTION").

C. The following shows how the previous example could have been coded without a "GO
TO" by utilizing an "EXIT PARAGRAPH" statement.

01 Switches.
05 Input-File-Switch PIC X(1).
88 EOF-On-Input-File VALUE Y FALSE N.

SET EOF-On-Input-File TO FALSE.
PERFORM 100-Process-A-Transaction
UNTIL EQF-On-Input-File.

100-Process—-A-Transaction.
READ Input-File AT END
SET EOF-On-Input-File TO TRUE
EXIT PARAGRAPH
END-READ.
IF Input-Rec of Input-File = SPACES
EXIT PARAGRAPH > IGNORE BLANK RECORDS!
END-IF.
<<KLprocess the record just read>>>

6. The following points apply to the "EXIT PERFORM" and "EXIT PERFORM CYCLE" statements:

A. The "EXIT PERFORM" and "EXIT PERFORM CYCLE" statements are intended to be used
in conjunction with an in-line "PERFORM" statement (see [Inline PERFORM], page 326).

B. An "EXIT PERFORM CYCLE" statement will terminate the current iteration of the in-
line "PERFORM", giving control to any "TIMES", "VARYING" and/or "UNTIL" clauses for
them to determine if another cycle needs to be performed.

C. An "EXIT PERFORM" statement will terminate the in-line PERFORM outright, trans-
ferring control to the first statement following the "END-PERFORM" (if there is one) or
to the next sentence following the "PERFORM" if there is no "END-PERFORM".

D. This last example shows the final modification to the previous examples by using an in-
line "PERFORM" along with "EXIT PERFORM" and "EXIT PERFORM CYCLE" statements:

PERFORM FOREVER
READ Input-File AT END
EXIT PERFORM
END-READ
IF Input-Rec of Input-File = SPACES

31 May 2018 Chapter 7 - PROCEDURE DIVISION



294 GnuCOBOL 3.0 rcl [03May2018] Programmer’s Guide

EXIT PERFORM CYCLE *> IGNORE BLANK RECORDS!
END-IF
<<KLprocess the record just read>>>
END PERFORM

7. The following points apply to the "EXIT PROGRAM" and "EXIT FUNCTION" statements:

A. The "EXIT PROGRAM" and "EXIT FUNCTION" statements terminate the execution of a
subroutine (i.e. a program that has been CALLed by another) or user-defined function,
respectively, returning control back to the calling program.

B. An "EXIT PROGRAM" statement returns control back to the statement following the
"CALL" (see [CALL], page 264) of the subprogram. An "EXIT FUNCTION" statement
returns control back to the processing of the statement in the calling program that
invoked the user-defined function.

C. If executed by a main program, neither the "EXIT PROGRAM" nor "EXIT FUNCTION"
statements will take any action.

D. The COBOL2002 standard has made a common extension to the COBOL language —
the "GOBACK" statement (see [GOBACK], page 298) — a standard language element;
the "GOBACK" statement should be strongly considered as the preferred alternative to
both "EXIT PROGRAM" and "EXIT FUNCTION" for new subprograms.

Chapter 7 - PROCEDURE DIVISION 31 May 2018



GnuCOBOL 3.0 rcl [03May2018] Programmer’s Guide 295

7.8.17. FREE

{ FREE Syntax

FREE { [ ADDRESS OF ] identifier-1 }...

The "FREE" statement releases memory previously allocated to the program by the "ALLOCATE"
statement (see [ALLOCATE], page 261).

1. The "ADDRESS OF" clause is optional and may be included, or not, at the discretion of the
programmer. The presence or absence of this clause has no effect upon the program.

2. <identifier-1> must have a "USAGE" (see [USAGE], page 210) of "POINTER", or it must be
an 01-level data item with the "BASED" (see [BASED], page 154) attribute.

3. If <identifier-1> is a "USAGE POINTER" data item and it contains a valid address, the "FREE"
statement will release the memory block the pointer references. In addition, any "BASED"
data items that the pointer was used to provide an address for will become un-based and
therefore un-usable. If <identifier-1> did not contain a valid address, no action will be
taken.

4. If <identifier-1> is a "BASED" data item and that data item is currently based (meaning it
currently has memory allocated to it), its memory is released and <identifier-1> will become
un-based and therefore un-usable. If <identifier-1> was not based, no action will be taken.

31 May 2018 Chapter 7 - PROCEDURE DIVISION



296

GnuCOBOL 3.0 rcl [03May2018] Programmer’s Guide

7.8.18. GENERATE

[

GENERATE Syntax

GENERATE { report-name-1 }

{ identifier-1 }

The "GENERATE" statement presents data to a report.

1. The following points apply when <identifier-1> is specified:

A. <identifier-1> must be the name of a "DETAIL" (see [RWCS Lexicon], page 557) report

B.
C.

group.
If necessary, <identifier-1> may be qualified with a report name.

The file in whose "FD" a "REPORT" clause exists for the report in which <identifier-1> is
a detail group must be opened for "OUTPUT" or "EXTEND" at the time the "GENERATE"
is executed. See [OPEN], page 322, for information on file open modes.

The report in which <identifier-1> is a "DETAIL" group must have been successfully
initiated via the "INITIATE" statement (see [INITIATE]|, page 307) and not yet termi-
nated via the "TERMINATE" statement (see [TERMINATE], page 372) at the time the
"GENERATE" is executed.

If at least one "GENERATE" statement of this form is executed against a report, the
report is said to be a ’detail report’. If no "GENERATE" statements of this form are
executed against a report, the report is said to be a ’summary report’.

2. The following points apply when <report-name-1> is specified:

A.

B.

<report-name-1> must be the name of a report having an "RD" defined for it in the
report section.

There must be at least one "CONTROL" (see [RWCS Lexicon|, page 557) group defined
for <report-name-1>.

There cannot be more than one "DETAIL" group defined for <report-name-1>.

The file in whose "FD" a "REPORT <report-name-1>" clause exists must be open for
"QUTPUT" or "EXTEND" at the time the GENERATE is executed.

<report-name-1> must have been successfully initiated (via "INITIATE <report-name-
1>") and not yet terminated (via TERMINATE) at the time the "GENERATE" is exe-
cuted. See [OPEN], page 322, for information on file open modes.

The "DETAIL" group which is defined for <report-name-1> will be processed but will
not actually be presented to any report page. This will allow summary processing to
take place. If all "GENERATE" statements are of this form, the report is said to be a
“summary report’. If at least one "GENERATE <identifier-1>" is executed, the report
is considered to be a ’detail report’.

3. When the first "GENERATE" statement for a report is executed, the contents of all control
fields are saved so they may be referenced during the processing of subsequent "GENERATE"
statements.

Chapter 7 - PROCEDURE DIVISION 31 May 2018



GnuCOBOL 3.0 rcl [03May2018] Programmer’s Guide 297

4. When, during the processing of a subsequent "GENERATE", it is determined that a control
field has changed value (ie. a control break has occurred), the appropriate control footing
and control heading processing will take place and a snapshot of the current values of all
control fields will again be saved.

31 May 2018 Chapter 7 - PROCEDURE DIVISION



298 GnuCOBOL 3.0 rcl [03May2018] Programmer’s Guide

7.8.19. GOBACK

{ GOBACK Syntax

GOBACK

The "GOBACK" statement is used to logically terminate an executing program.

1. If executed within a subprogram (i.e. a subroutine or user-defined function), "GOBACK"
behaves like an "EXIT PROGRAM" or "EXIT FUNCTION" statement, respectively.

2. If executed within a main program, "GOBACK" will act as a "STOP RUN" statement.

Chapter 7 - PROCEDURE DIVISION 31 May 2018



GnuCOBOL 3.0 rcl [03May2018] Programmer’s Guide 299

7.8.20. GO TO

7.8.20.1. Simple GO TO

[ Simple GO TO Syntax }

GO TO procedure-name-1

This form of the "GO TO" statement unconditionally transfers control in a program to the first
executable statement within the specified <procedure-name-1>.

1. The reserved word "TQ" is optional and may be included, or not, at the discretion of the
programmer. The presence or absence of this word has no effect upon the program.

2. If this format of the "GO TO" statement appears in a consecutive sequence of imperative
statements (see [Imperative Statement]|, page 638) within a sentence, it must be the final
statement in the sentence.

3. If a "GO TO" is executed within the scope of. ..

A. ..an in-line "PERFORM" (see [PERFORM], page 324), the "PERFORM" is terminated as
control of execution transfers to <procedure-name-1>.

B. ...a procedural "PERFORM" (see [PERFORM], page 324), and <procedure-name-1> lies
outside the scope of that "PERFORM", the "PERFORM" is terminated as control of execu-
tion transfers to <procedure-name-1>.

C. ...a "MERGE" statement (see [MERGE], page 313) "OUTPUT PROCEDURE" or within the
scope of either an "INPUT PROCEDURE" or "OUTPUT PROCEDURE" of a "SORT" statement
(see [File-Based SORT], page 354), and <procedure-name-1> lies outside the scope of
that procedure, the "SORT" or "MERGE" operation is terminated as control of execution
transfers to <procedure-name-1>. Any sorted or merged data accumulated to that point
is lost.

31 May 2018 Chapter 7 - PROCEDURE DIVISION



300

GnuCOBOL 3.0 rcl [03May2018] Programmer’s Guide

7.8.20.2. GO TO DEPENDING ON

[

GO TO DEPENDING ON Syntax j

GO

TO procedure-name-1...

DEPENDING ON identifier-1

This form of the "GO TO" statement will transfer control to any one of a number of specified
procedure names depending on the numeric value of the identifier specified on the statement.

1.

The reserved word "TO" is optional and may be included, or not, at the discretion of the
programmer. The presence or absence of this word has no effect upon the program.

The "PICTURE" (see [PICTURE], page 186) and/or "USAGE" (see [USAGE], page 210) of
the specified <identifier-1> must be such as to define it as a numeric, unedited, preferably
unsigned integer data item.

If the value of <identifier-1> has the value 1, control will be transferred to the 1st specified
procedure name. If the value is 2, control will transfer to the 2nd procedure name, and so
on.

If control of execution is transferred to a procedure named on the statement, and the "GO
TO" is executed within the scope of. . .

A. ..an in-line "PERFORM" (see [PERFORM], page 324), the "PERFORM" is terminated as
control of execution transfers to the procedure named on the statement.

B. ...a procedural "PERFORM" (see [PERFORM], page 324), and <procedure-name-1> lies
outside the scope of that "PERFORM", the "PERFORM" is terminated as control of execu-
tion transfers to the procedure named on the statement.

C. ...a "MERGE" statement (see [MERGE], page 313) "QUTPUT PROCEDURE" or within the
scope of either an "INPUT PROCEDURE" or "OUTPUT PROCEDURE" of a "SORT" statement
(see [File-Based SORT], page 354), and <procedure-name-1> lies outside the scope of
that procedure, the "SORT" or "MERGE" operation is terminated as control of execu-
tion transfers to the procedure named on the statement. Any sorted or merged data
accumulated to that point is lost.

If the value of <identifier-1> is less than 1 or exceeds the total number of procedure names
specified on the statement, control will simply fall through into the next statement following
the "GO TO".

The following example shows how "GO TO ... DEPENDING ON" may be used in a real appli-
cation situation, and compares it against an alternative — "EVALUATE" (see [EVALUATE],
page 288).

GO TO DEPENDING ON Example Equivalent EVALUATE Example
GO TO EVALUATE Acct-Type
ACCT-TYPE-1 WHEN 1
ACCT-TYPE-2 <<< Handle Acct Type 1 >>>
ACCT-TYPE-3 WHEN 2

Chapter 7 - PROCEDURE DIVISION 31 May 2018



GnuCOBOL 3.0 rcl [03May2018] Programmer’s Guide 301

DEPENDING ON Acct-Type. <<< Handle Acct Type 2 >>>
<<< Invalid Acct Type >>> WHEN 3
GO TO All-Done. <<< Handle Acct Type 3 >>>
Acct-Type-1. WHEN OTHER
<<< Handle Acct Type 1 >>> <<< Invalid Acct Type >>>
GO TO All-Done. END-EVALUATE.
Acct-Type-2.

<<< Handle Acct Type 2 >>>

GO TO All-Done.
Acct-Type-3.

<<< Handle Acct Type 3 >>>
All-Done.

6. Current programming philosophy would prefer the use of the "EVALUATE" statement to that
of this form of the "GO TO" statement.

31 May 2018 Chapter 7 - PROCEDURE DIVISION



302

GnuCOBOL 3.0 rcl [03May2018] Programmer’s Guide

7.8.21. IF

[

IF Syntax

IF conditional-expression

THEN { imperative-statement-1 }
{ NEXT SENTENCE }

ELSE { imperative-statement-2 } ]

~~~~ { NEXT SENTENCE +

The "IF" statement is used to conditionally execute an imperative statement (see [Imperative
Statement], page 638) or to select one of two different imperative statements to execute based
upon the TRUE/FALSE value of a conditional expression.

1.

The reserved word "THEN" is optional and may be included, or not, at the discretion of the
programmer. The presence or absence of this word has no effect upon the program.

You cannot use both "NEXT SENTENCE" and the "END-IF" scope terminator in the same
"TIF" statement.

If <conditional-expression> evaluates to TRUE, <imperative-statement-1> will be executed
regardless of whether or not an "ELSE" clause is present. Once <imperative-statement-1>
has been executed, control falls into the first statement following the "END-IF" or to the
first statement of the next sentence if there is no "END-IF" clause.

If the optional "ELSE" clause is present and conditional-expression evaluates to false, then
(and only then) <imperative-statement-2> will be executed. Once <imperative-statement-2>
has been executed, control falls into the first statement following the "END-IF" or to the
first statement of the next sentence if there is no "END-IF" clause.

The clause "NEXT SENTENCE" may be substituted for either imperative-statement, but
not both. If control reaches a "NEXT SENTENCE" clause due to the truth or falsehood
of <conditional-expression>, control will be transferred to the first statement of the next
sentence found in the program (the first statement after the next period).

"NEXT SENTENCE" was needed for COBOL programs that were coded according to pre-1985
standards that wish to nest one "IF" statement inside another. See [Use of VERB/END-
VERB Constructs|, page 56, for an explanation of why "NEXT SENTENCE" was necessary.

Programs coded for 1985 (and beyond) standards don’t need it, instead using the ex-
plicit scope-terminator "END-IF" to inform the compiler where <imperative-statement-2>
(or <imperative-statement-1> if there is no "ELSE" clause coded) ends. New GnuCOBOL
programs should be coded to use the "END-IF" scope terminator for "IF" statements. See
[Use of VERB/END-VERB Constructs], page 56, for additional information.

Chapter 7 - PROCEDURE DIVISION 31 May 2018

GnuCOBOL 3.0 rcl [03May2018] Programmer’s Guide 303

7.8.22. INITTIALIZE

[

INITTALIZE Syntax

INITIALIZE|INITIALISE identifier-1...

[{ category-name-1 } TO VALUE]
{ ALL e

[THEN REPLACING { category-name-2 DATA B
[LENGTH OF] { literal-1 } }...]
"""""" { identifier-1 }

[THEN TO DEFAULT]

The "INITIALIZE" statement initializes each <identifier-1> with certain specific values, depend-
ing upon the options specified.

1.

The reserved words "DATA", "OF", "THEN", "TO" and "WITH" are optional and may be
included, or not, at the discretion of the programmer. The presence or absence of these
words has no effect upon the program.

The reserved words "INITIALIZE" and "INITIALISE" are interchangeable.

The "WITH FILLER", "REPLACING" and "DEFAULT" clauses are meaningful only if <identifier-
1> is a group item. They are accepted if it’s an elementary item, but will serve no purpose.
The "VALUE" clause is meaningful in both cases.

A <category-name-1> and/or <category-name-2> may be any of the following:

"ALPHABETIC"

The "PICTURE" (see [PICTURE], page 186) of the data item only contains "A"
symbols.

"ALPHANUMERIC"

The "PICTURE" of the data item contains only "X" or a combination of "A" and
"9" symbols.

"ALPHANUMERIC-EDITED"

The "PICTURE" of the data item contains only "X" or a combination of "A" and
"9" symbols plus at least one "B", "0" (zero) or "/" symbol.

"NUMERIC"

The data item is one that is described with a picture less "USAGE" (see [USAGE],
page 210) or has a "PICTURE" composed of nothing but "P", "9", "S" and "V"
symbols.

31 May 2018 Chapter 7 - PROCEDURE DIVISION

304

9.

GnuCOBOL 3.0 rcl [03May2018] Programmer’s Guide

"NUMERIC-EDITED"

The "PICTURE" of the data item contains nothing but the symbol "9" and at
least one of the editing symbols "$", "+" "-" NCR" "DB" "." " " "x" or
IIZ".

"NATIONAL"

The data item is one containing nothing but the "N" symbol.

"NATIONAL-EDITED"

The data item contains nothing but "N", "B", "/" and "0" symbols.

From the sequence of <identifier-1> data items specified on the "INITIALIZE" statement,
a list of initialized fields referred to as the field list in the remainder of this section, will
include:

A. Every <identifier-1> that is an elementary item, including any that may have the
"REDEFINES" (see [REDEFINES], page 196) clause in their descriptions.

B. Every non-FILLER elementary item subordinate to <identifier-1>, provided that ele-
mentary item neither contains a "REDEFINES" clause in its definition nor belongs to a
group item subordinate to <identifier-1> which contains a "REDEFINES" clause in its
definition.

C. If the optional "WITH FILLER" clause is included on the "INITIALIZE" statement, then
every FILLER elementary item subordinate to each <identifier-1> will be included
as well, provided that elementary item neither contains a "REDEFINES" clause in its
definition nor belongs to a group item subordinate to <identifier-1> which contains a
"REDEFINES" clause in its definition..

Once a field list has been determined, each item in that field list will be initialized as if an
individual "MOVE" (see [MOVE], page 316) statement to that effect had been coded. The
rules for initialization are as follows:

If no "VALUE", "REPLACING" or "DEFAULT" clauses are coded, each member of the field list
will be initialized as if the figurative constant "ZERO" (if the field list item is numeric or
numeric-edited) or "SPACES" (otherwise) were being moved to it.

If a "VALUE" clause is specified on the "INITIALIZE" statement, each qualifying member
of the field list having a compile-time "VALUE" (see [VALUE], page 220) specified in it’s
definition will be initialized to that value. Field list members with "VALUE" clauses will
qualify for this treatment as follows:

A. If the "ALL" keyword was specified on the "VALUE" clause, all members of the field list
with "VALUE" clauses will qualify.

B. If <category-name-1> is specified instead of "ALL", only those members of the field list
with "VALUE" clauses that also meet the criteria set down for the specified <category-
name> (see the list above) will qualify.

C. If you need to apply "VALUE" initialization to multiple <category-name-1> values, you
will need to use multiple "INITIALIZE" statements.

If a "REPLACING" clause is specified on the "INITIALIZE" statement, each qualifying mem-
ber of the field list that was not already initialized by a "VALUE" clause, if any, will be
initialized to the specified <literal-1> or <identifier-1> value.

Chapter 7 - PROCEDURE DIVISION 31 May 2018

GnuCOBOL 3.0 rcl [03May2018] Programmer’s Guide 305

Only those as-yet uninitialized list members meeting the criteria set forth for the specified
<category-name-2> will qualify for this initialization.

If you need to apply "REPLACING" initialization to multiple <category-name-2> values, you
may repeat the syntax after the reserved word "REPLACING", as necessary.

10. If a "DEFAULT" clause is specified, any remaining uninitialized members of the field list
will be initialized according to the default for their class (numeric and numeric-edited are
initialized to ZERO, all others are initialized to SPACES).

11. The following example may help your understanding of how the "INITIALIZE" statement
works. The sample code makes use of the COBDUMP program to dump the storage that is
(or is not) being initialized. See Section “COBDUMP” in GnuCOBOL Sample Programs,
for a source and cross-reference listing of the COBDUMP program.

IDENTIFICATION DIVISION.
PROGRAM-ID. DemoInitialize.
DATA DIVISION.
WORKING-STORAGE SECTION.

01 Item-1.
05 I1-A VALUE ALL ’=%’.
10 FILLER PIC X(1).
10 I1-A-1 PIC 9(1) VALUE 9.
05 I1-B USAGE BINARY-CHAR.
05 I1-C PIC A(1) VALUE °C’.
05 I1-D PIC X/X VALUE °ZZ’.
05 I1-E OCCURS 2 TIMES PIC 9.
PROCEDURE DIVISION.
000-Main.

DISPLAY "MOVE HIGH-VALUES TO Item-1"
PERFORM 100-Init-Item-1
CALL "COBDUMP" USING Item-1
DISPLAY " "

DISPLAY "INITIALIZE Item-1"
INITIALIZE Item-1
CALL "COBDUMP" USING Item-1
PERFORM 100-Init-Item-1
DISPLAY " "

DISPLAY "INITIALIZE Item-1 WITH "FILLER""
MOVE HIGH-VALUES TO Item-1
INITIALIZE Item-1 WITH "FILLER"
CALL "COBDUMP" USING Item-1
PERFORM 100-Init-Item-1
DISPLAY " "

DISPLAY "INITIALIZE Item-1 ALL TO VALUE"
MOVE HIGH-VALUES TO Item-1
INITIALIZE Item-1 ALPHANUMERIC TO VALUE
CALL "COBDUMP" USING Item-1
PERFORM 100-Init-Item-1

31 May 2018 Chapter 7 - PROCEDURE DIVISION

306 GnuCOBOL 3.0 rcl [03May2018] Programmer’s Guide

DISPLAY " "

DISPLAY "INITIALIZE Item-1 REPLACING NUMERIC BY 1"
MOVE HIGH-VALUES TO Item-1
INITIALIZE Item-1 REPLACING NUMERIC BY 1
CALL "COBDUMP" USING Item-1
PERFORM 100-Init-Item-1
DISPLAY " "

STOP RUN

100-Init-Item-1.
MOVE HIGH-VALUES TO Item-1

When executed, this program produces the following output:

MOVE HIGH-VALUES TO Item-1
<-Addr-> Byte <-----———------—- Hexadecimal ---------——————- > <---- Char ---->

00404058 1 FF FF FF FF FF FF FF FF FF,

INITIALIZE Item-1
<-Addr-> Byte <-----————-----—- Hexadecimal -----------————- > <---- Char ---->

00404058 1 FF 30 00 20 20 2F 20 30 30 .0. /00

INITIALIZE Item-1 WITH "FILLER"
<-Addr-> Byte <------——------—- Hexadecimal --------------—- > <---- Char ---->

00404058 1 20 30 00 20 20 2F 20 30 30 0. / 00

INITIALIZE Item-1 ALL TO VALUE
<-Addr-> Byte <-----—————----—- Hexadecimal ------------———- > <---- Char ---->

00404058 1 2A 2A FF 43 5A 5A 20 FF FF *%,CZZ ..

INITIALIZE Item-1 REPLACING NUMERIC BY 1
<-Addr-> Byte <-----————-----—- Hexadecimal -----------—-———- > <---- Char ---->

00404058 1 FF 31 01 FF FF FF FF 31 31 R R 11

Chapter 7 - PROCEDURE DIVISION 31 May 2018

GnuCOBOL 3.0 rcl [03May2018] Programmer’s Guide 307

7.8.23. INITIATE

{ INITTIATE Syntax

INITIATE report-name-1

The "INITIATE" statement starts Report-Writer Control System (RWCS) processing for a re-
port.

1. Each <report-name-1> must be the name of a report having an "RD" (see [REPORT SEC-
TION], page 132) defined for it.

2. The file in whose "FD" (see [File/Sort-Description|, page 121) a "REPORT <report-name-
1>" clause exists must be open for "OUTPUT" or "EXTEND" at the time the "INITIATE"
statement is executed. See [OPEN], page 322, for more information on file open modes.

3. The "INITIATE" statement will initialize all of the following for each report named on the
statement:

e All sum counters, if any, will be set to 0

e The report’s "LINE-COUNTER" special register (see [Special Registers], page 240) will
be set to 0

e The report’s "PAGE-COUNTER" special register will be set to 1

4. No report content will actually presented to the report file as a result of a successful
"INITIATE" statement — that will not occur until the first "GENERATE" statement (see
[GENERATE], page 296) is executed.

31 May 2018 Chapter 7 - PROCEDURE DIVISION

308 GnuCOBOL 3.0 rcl [03May2018] Programmer’s Guide

7.8.24. INSPECT

{ INSPECT Syntax

INSPECT { literal-1 }
~~~~~~~ { identifier-1 }
{ function-reference-1 }

[ TALLYING { identifier-2 FOR { ALL|LEADING|TRAILING { literal-2 } 3
”””””””” T { v ommmmmey o memmme~r { identifier-3 1o}
{ CHARACTERS }
[ | { AFTER|BEFORE } INITIAL { literal-3 FI1r..0]
| o v { identifier-4 } |
[ REPLACING { { { ALL|FIRST|LEADING|TRAILING { literal-4 }}
””””””””” {{~~ ~7~~7 mommmms meem= > { identifier-5 } }
{ CHARACTERS }
{ ~mrmmmmes }
BY { [ ALL ] literal-5 }
~{ - }
{ identifier-6 }
[ | { AFTER|BEFORE } INITIAL { literal-6 S O S
| datatel i atatatatet { identifier-7 7} |
[ CONVERTING { { literal-7 } TO { literal-8 }
”””””””””” { identifier-8 } ~~ { identifier-9 }
[ | { AFTER|BEFORE } INITIAL { literal-9 FI11
| v v { identifier-10 } |

The "INSPECT" statement is used to perform various counting and/or data-alteration operations
against strings.

1. The reserved word "INITIAL" is optional and may be included, or not, at the discretion of
the programmer. The presence or absence of this words has no effect upon the program.

2. If a "CONVERTING" clause is specified, neither the "TALLYING" nor "REPLACING" clauses
may be used.

3. If either the "TALLYING" or "REPLACING" clauses are specified, the "CONVERTING" clause
cannot be used.

4. If both the "TALLYING" and "REPLACING" clauses are specified, they must be specified in
the order shown.

5. All literals and identifiers must be explicitly or implicitly defined as alphanumeric or alpha-
betic.

Chapter 7 - PROCEDURE DIVISION 31 May 2018



GnuCOBOL 3.0 rcl [03May2018] Programmer’s Guide 309

6. If <function-reference-1> is specified, it must be an invocation of an intrinsic function that
returns a string result. Additionally, only the "TALLYING" clause may be specified.

7. If <literal-1> is specified, only the "TALLYING" clause may be specified.

8. Whichever is specified — <literal-1>, <identifier-1> or <function-reference-1> — that item
will be referred to in the discussions that follows as the 'inspect subject’.

9. The three optional clauses control the operation of this statement as follows:

A. The "CONVERTING" clause replaces one or more individual characters found in the
inspect subject with a different character in much the same manner as is possible with
the "TRANSFORM" statement (see [TRANSFORM], page 373).

B. The "REPLACING" clause replaces one or more sub strings located in the inspect subject
with a different, but equally-sized replacement sub string. If you need to replace a
sub string with another of a different length, consider using either the "SUBSTITUTE"
intrinsic function (see [SUBSTITUTE], page 470) or the "SUBSTITUTE-CASE" intrinsic
function (see [SUBSTITUTE-CASE], page 471).

C. The "TALLYING" clause counts the number of occurrences of one or more strings of
characters in the inspect subject.

10. The optional "INITIAL" clauses may be used to limit the range of characters in the inspect
subject that the "CONVERTING", "REPLACING" or "TALLYING" instruction in which they
occur will apply. We call this the ’target range’ of the inspect subject. The target range is
defined as follows:

A. If there is no "INITIAL" clause specified, the target range is the entire inspect subject.

B. Either a "BEFORE" phrase, an "AFTER" phrase or both may be specified. They may be
specified in any order.

C. The starting point of the target range will be the first character following the sub string
identified by the "AFTER" specification. The ending point will be the last character
immediately preceding the sub string identified by the "BEFORE" specification.

D. If no "AFTER" is specified, the first character position of the target range will be char-
acter position #1 of the inspect subject.

E. If no "BEFORE" is specified, the last character position of the target range will be the
last character position of the inspect subject.

11. The following points apply to the use of the "TALLYING" clause:

A. While there will typically be only be a single set of counting instructions on an
"INSPECT":

INSPECT Character-String
TALLYING C-ABC FOR ALL "ABC"

There could be multiple counting instructions specified:

INSPECT Character-String
TALLYING C-ABC FOR ALL "ABC"
C-BCDE FOR ALL "BCDE"

When there are multiple instructions, the one specified first will take priority over the

31 May 2018 Chapter 7 - PROCEDURE DIVISION



310

GnuCOBOL 3.0 rcl [03May2018] Programmer’s Guide

one specified second, (and so forth) as the "INSPECT" proceeds forward through the
inspect subject, character-by-character.

With the above example, if the inspect subject were "--ABCDEF----BCDEF--", the
final result of the counting would be that C-ABC would be incremented by 1 while
C-BCDE would be incremented only once; although the human eye clearly sees two
"BCDE" sequences, the "INSPECT ... TALLYING" would only "see" the second — the
first would have been processed by the first (higher-priority) counting instruction.

B. Each set of counting instructions contains the following information:

a. A target range, specified by the presence of an "AFTER INITIAL" and/or "BEFORE

INITIAL" clause; the rules for specifying target ranges were covered previously.

. A Target Sub string — this is a sequence of characters to be located somewhere

in the inspect subject and counted. Target sub strings may be defined as a literal
value (figurative constants are allowed) or by the contents of an identifier. If the
target sub string is specified as a figurative constant, it will be assumed to have
a length of one (1) character. The keywords before the literal or identifier control
how many target sub strings could be identified from that replacement instruction,
as follows:

"ALL" — identifies every possible target sub string that occurs within the target
range. There are three occurrences of "ALL ’XX’" found in "aXXabbXXccXXdd".

"LEADING" — identifies only an occurrence of the target sub string found ei-
ther at the first character position of the target range or immediately following a
previously-found occurrence. There are no occurrences of "LEADING ’>XX’" found
in "aXXabbXXccXXdd", but there is one occurrence of "LEADING ’a’" (the first
character).

"TRAILING" — identifies only an occurrence of the target sub string found ei-
ther at the very end of the target range or toward the end, followed by nothing
but other occurrences. There are no occurrences of "LEADING ’XX’" found in
"aXXabbXXccXXdd", but there are two occurrences of "TRAILING ’d’".

The "CHARACTERS" option will match any one single character, regardless of what
that character is.

C. <identifier-2> will be incremented by 1 each time the target sub string is found within
the target range of the inspect subject. The "INSPECT" statement will not zero-out
<identifier-2> at the start of execution of the "INSPECT" — it is the programmer’s
responsibility to ensure that all <identifier-2> data items are properly initialized to the
desired starting values prior to execution of the "INSPECT".

12. The following points apply to the use of the "REPLACING" clause:

A. While there will typically be only be a single set of replacement instructions on an
"INSPECT":

INSPECT Character-String
REPLACING ALL "ABC" BY "DEF"

There could be multiple replacement instructions:

INSPECT Character-String

Chapter 7 - PROCEDURE DIVISION 31 May 2018



GnuCOBOL 3.0 rcl [03May2018] Programmer’s Guide 311

REPLACING ALL "ABC" BY "DEF"
ALL "BCDE" BY "WXYZ"

When there are multiple replacement instructions, the one specified first will take
priority over the one specified second, (and so forth) as the "INSPECT" proceeds forward
through the inspect subject, character-by-character.

With the above example, if the inspect subject were "--ABCDEF----BCDEF--", the final
result of the replacement would be "--DEFDEF----WXYZF--".

B. Each set of replacement instructions contains the following information:

a. A target range, specified by the presence of an "AFTER INITIAL" and/or "BEFORE
INITIAL" clause; the rules for specifying target ranges were covered previously.

b. A Target Sub string — this is a sequence of characters to be located somewhere
in the inspect subject and subsequently replaced with a new value. Target sub
strings, which are specified before the "BY" keyword, may be defined as a literal
value (figurative constants are allowed) or by the contents of an identifier. If the
target sub string is specified as a figurative constant, it will be assumed to have
a length of one (1) character. The keywords before the literal or identifier control
how many target sub strings could be identified from that replacement instruction,
as follows:

"ALL" — identifies every possible target sub string that occurs within the target
range. There are three occurrences of "ALL ’XX’" found in "aXXabbXXccXXdd".

"FIRST" — the first occurrence of the target sub string found within the target
range. The "FIRST ’XX’" found in "aXXabbXXccXXdd" would be the one found
between the "a" and "b" characters.

"LEADING" — an occurrence of the target sub string found either at the first charac-
ter position of the target range or immediately following a previously-found occur-
rence. There are no occurrences of "LEADING ’XX’" found in "aXXabbXXccXXdd",
but there is one occurrence of "LEADING ’a’" (the first character).

"TRAILING" — an occurrence of the target sub string found either at the very end
of the target range or toward the end, followed by nothing but other occurrences.
There are no occurrences of "LEADING ’XX’" found in "aXXabbXXccXXdd", but
there are two occurrences of "TRAILING ’4’°".

The "CHARACTERS" option will match any one single character. When you use
this option, the replacement sub string (see the next item) must be exactly one
character in length.

c. A Replacement Sub string — this is the sequence of characters that should replace
the target sub string. Replacement sub strings are specified after the "BY" keyword.
They too may be specified as a literal, either with or without an "ALL" prefix
(again, figurative constants are allowed) or the value of an identifier. If a figurative
constant is coded, the "ALL" keyword will be assumed, even if it wasn’t specified.
Literals without "ALL" will either be truncated or padded with spaces on the right
to match the length of the target sub string. Literals with "ALL" or figurative
constants will be repeated as necessary to match the length of the target sub

31 May 2018 Chapter 7 - PROCEDURE DIVISION



312 GnuCOBOL 3.0 rcl [03May2018] Programmer’s Guide

string. Identifiers specified as replacement sub strings must be defined with a
length equal to that of the target sub string.

13. When both "REPLACING" and "TALLYING" are specified:

A. The "INSPECT" statement will make a single pass through the sequence of characters
comprising the inspect subject. As the pointer to the current inspect target character
reaches a point where it falls within the explicit or implicit target ranges specified on the
operational instructions of the two clauses, the actions specified by those instructions
will become eligible to be taken. As the character pointer reaches a point where it falls
past the end of target ranges, the instructions belonging to those target ranges will
become disabled.

B. At any point in time, there may well be multiple"REPLACING" and/or "TALLYING" op-
erational instructions active. Only one of the "TALLYING" and one of the "REPLACING"
instructions (if any) can be executed for any one character pointer position. In each
case, it will be the first of the instructions in each category that produces a match with
it’s target string specification.

C. When both a "TALLYING" and a "REPLACING" instruction have been selected for ex-
ecution, the "TALLYING" instruction will be executed first. This guarantees that
"TALLYING" will compute occurrences based upon the initial value of the inspect sub-
ject before any replacements occur.

14. The following points apply to the use of the "CONVERTING" clause:

A. A "CONVERTING" clause performs a series of single-character substitutions against a
data item in much the same manner as is possible with the "TRANSFORM" statement
(see [TRANSFORM], page 373).

B. Unlike the "TALLYING" and "REPLACING" clauses, both of which may have multiple
operations specified, there may be only one "CONVERTING" operation per "INSPECT".

C. If the length of <literal-7> or <identifier-8> (the "from" string) ezceeds the length of
<literal-8> or <identifier-9> (the "to" string), then the "to" string will be assumed to
be padded to the right with enough spaces to make it the same length as the "from"
string.

D. If the length of the "from" string is less than the length of the "to" string, then the
"to" string will be truncated to the length of the "from" string.

E. Each character, in turn, within the "from" string will be searched for in the target range
of the inspect subject. Each located occurrence will be replaced by the corresponding
character of the "to" string.

Chapter 7 - PROCEDURE DIVISION 31 May 2018



GnuCOBOL 3.0 rcl [03May2018] Programmer’s Guide 313

7.8.25. MERGE

[

MERGE Syntax j

MERGE sort-file-1

{ ON { ASCENDING } KEY identifier-1... }...
L X

{ OUTPUT PROCEDURE IS procedure-name-1 }
2 }
{ [ THRU|THROUGH procedure-name-2 ] %
{  Trmmommmre }
{ GIVING file-name-3... }
{ }

The "DUPLICATES" clause is syntactically recognized but is otherwise non-functional.

The "MERGE" statement merges the contents of two or more files that have each been pre-sorted
on a set of specified identical keys.

1.

The reserved words "IN", "IS", "KEY", "ON", "ORDER", "SEQUENCE" and "WITH" are optional
and may be included, or not, at the discretion of the programmer. The presence or absence
of these words has no effect upon the program.

The reserved words "THRU" and "THROUGH" are interchangeable.

GnuCOBOL always behaves as if the "WITH DUPLICATES IN ORDER" clause is specified,
even if it isn’t.

While any COBOL implementation’s sort or merge facilities guarantee that records with
duplicate key values will be in proper sequence with regard to other records with different
key values, they generally make no promises as to the resulting relative sequence of records
having duplicate key values with one another.

Some COBOL implementations provide this optional clause to force their sort and merge
facilities to retain duplicate key-value records in their original input sequence, relative to
one another.

The <sort-file-1> named on the "MERGE" statement must be defined using a sort description
("sD" (see [File/Sort-Description|, page 121)). This file is referred to in the remainder of
this discussion as the "merge work file".

Each <file-name-1>, <file-name-2> and <file-name-3> (if specified) must reference
"ORGANIZATION LINE SEQUENTIAL" (see [ORGANIZATION LINE SEQUENTIALJ,

31 May 2018 Chapter 7 - PROCEDURE DIVISION



314

10.

GnuCOBOL 3.0 rcl [03May2018] Programmer’s Guide

page 108) or "ORGANIZATION SEQUENTIAL" (see [ORGANIZATION SEQUENTIAL],
page 106) files.  These files must be defined using a file description ("FD" (see
[File/Sort-Description|, page 121)).

The <identifier-1> . .. field(s) must be defined as field(s) within a record of <sort-file-1>.

The record descriptions of <file-name-1>, <file-name-2>, <file-name-3> (if any) and <sort-
file-1> are assumed to be identical in layout and size. While the actual data names used for
fields in these files’ records may differ, the structure of records, "PICTURE" (see [PICTURE],
page 186) of fields, "USAGE" (see [USAGE], page 210) of fields, size of fields and location
of fields within the records should match field-by-field across all files, at least as far as the
"KEY" fields are concerned.

A common programming technique when using the "MERGE" statement is to define the
records of all files involved as simple elementary items of the form "01 record-name PIC
X(n)." where n is the record size. The only file where records are actually described in
detail would then be <sort-file-1>.

The following rules apply to the files named on the "USING" clause:

A. None of them may be open at the time the "MERGE" is executed.

B. Each of those files is assumed to be already sorted according to the specifications set
forth on the "MERGE" statement’s "KEY" clause.

C. No two of those files may be referenced on a "SAME RECORD AREA" (see [SAME
RECORD AREA], page 114), "SAME SORT AREA" or "SAME SORT-MERGE AREA" state-
ment.

The merging process is as follows:

A. As the "MERGE" statement begins execution, the first record in each of the "USING"
files is read automatically.

B. As the "MERGE" statement executes, the current record from each of the "USING"
files is examined and compared to each other according to the rules set forth by the
"KEY" clause and the alphabet (see [Alphabet-Name-Clause], page 94) specified on the
"COLLATING SEQUENCE" clause. The record that should be next in sequence will be
written to the merge work file and the "USING" file from which that record came will
be read so that its next record is available. As end-of-file conditions are reached on
"USING" files, those files will be excluded from further processing — processing contin-
ues with the remaining files until all the contents of all of them have been exhausted.

C. After the merge work file has been populated, the merged data will be written to each
<file-name-3> if the "GIVING" clause was specified, or will be processed by utilizing an
"OUTPUT PROCEDURE".

D. When "GIVING" is specified, none of the <file-name-3> files can be open at the time
the "MERGE" statement is executed.

E. When an output procedure is used, the procedure(s) specified on the "QUTPUT
PROCEDURE" clause will be invoked as if by a procedural "PERFORM" (see [Procedural
PERFORM], page 324) statement with no "VARYING", "TIMES" or "UNTIL" options
specified. Merged records may be read from the merge work file — one at a time —
within the output procedure using the "RETURN" (see [RETURN], page 337) statement.

Chapter 7 - PROCEDURE DIVISION 31 May 2018



GnuCOBOL 3.0 rcl [03May2018] Programmer’s Guide 315

A "GO TO" statement (see [GO TO], page 299) that transfers control out of the output
procedure will terminate the "MERGE" statement but allows the program to continue
executing from the point where the "GO TO" statement transferred control to. Once
an output procedure has been "aborted" using a "GO TO" it cannot be resumed, and
the contents of the merge work file are lost. You may, however, re-execute the "MERGE"
statement itself. USING A "GO TO" statement TO PREMATURELY TERMINATE
A MERGE, OR RE-STARTING A PREVIOUSLY-CANCELLED MERGE IS NOT
CONSIDERED GOOD PROGRAMMING STYLE AND SHOULD BE AVOIDED.

An output procedure should be terminated in the same way a procedural "PERFORM"
statement would be. Usually, this action will be taken once the "RETURN" statement
indicates that all records in the merge work file have been processed, but termination
could occur at any time — via an "EXIT" statement (see [EXIT], page 292) — if
required.

Neither a file-based "SORT" statement (see [File-Based SORT], page 354) nor another
"MERGE" statement may be executed within the scope of the procedures comprising the
output procedure unless those statements utilize a different sort or merge work file.

F. Once the output procedure terminates, or the last <file-name-3> file has been populated
with merged data, the output phase — and the "MERGE" statement itself — is complete.

31 May 2018 Chapter 7 - PROCEDURE DIVISION



316 GnuCOBOL 3.0 rcl [03May2018] Programmer’s Guide

7.8.26. MOVE

7.8.26.1. Simple MOVE

[ Simple MOVE Syntax

MOVE { literal-1 } TO identifier-2...
~~~~ { identifier-1 } ~~

The Simple "MOVE" statement moves a specific value to one or more receiving data items.

1. The "MOVE" statement will replace the contents of one or more receiving data items
(<identifier-2>) with a new value — the one specified by <literal-1> or <identifier-1>.

2. Only numeric data can be moved to a numeric or numeric-edited <identifier-2>. A "MOVE"
involving numeric data will perform any necessary format conversions that might be neces-
sary due to differing "USAGE" (see [USAGE], page 210) specifications.

3. The contents of the <identifier-1> data item will not be changed, unless that same data
item appears as an <identifier-2>. Note that such situations will cause a warning message
to be issued by the compiler, if warning messages are enabled.

Chapter 7 - PROCEDURE DIVISION 31 May 2018

GnuCOBOL 3.0 rcl [03May2018] Programmer’s Guide 317

7.8.26.2. MOVE CORRESPONDING

{ MOVE CORRESPONDING Syntax j

MOVE CORRESPONDING identifier-1 TO identifier-2...

The "MOVE CORRESPONDING" statement similarly-named items from one group item to another.

1. The reserved word "CORRESPONDING" may be abbreviated as "CORR".
2. Both <identifier-1> and <identifier-2> must be group items.

3. See [CORRESPONDING], page 234, for a discussion of how corresponding matches between
two group items are established.

4. When corresponding matches are established, the effect of a "MOVE CORRESPONDING" on
those matches will be as if a series of individual "MOVE"s were done — one for each match.

31 May 2018 Chapter 7 - PROCEDURE DIVISION

318 GnuCOBOL 3.0 rcl [03May2018] Programmer’s Guide

7.8.27. MULTIPLY
7.8.27.1. MULTIPLY BY

[MULTIPLY BY Syntax

MULTIPLY { literal-1 } BY { identifier-2
~~~~~~~~ { identifier-1 } =~

[ ROUNDED [ MODE IS { AWAY-FROM-ZERO
~~~~~~~ ~ o~ { DR R e

-
| —
—_

Y...

e
=
(|
o>
(=)
(S|
2
v
L |
v
[
[
L
1|
T
L)
O
=R
LI |
t N
1|
L=
v O
N

-~
R
R
R
R
R
b3
b3
b3
R
R
B e e e I s = AL~

The "MULTIPLY BY" statement computes the product of one or more data items (<identifier-2>)
and either a numeric literal or another data item.

1. The reserved words "IS" and "ON" are optional and may be included, or not, at the dis-
cretion of the programmer. The presence or absence of these words has no effect upon the
program.

2. Both <identifier-1> and <identifier-2> must be numeric un-edited data items; <literal-1>
must be a numeric literal.

3. The product of <identifier-1> or <literal-1> and each <identifier-2>, in turn, will be com-
puted and moved to each of the <identifier-2> data items, replacing the prior contents.

4. The value of <identifier-1> is not altered, unless that same data item appears as an
<identifier-2>.

5. The optional "ROUNDED" (see [ROUNDED], page 237) clause available to each <identifier-2>
will control how non-integer results will be saved.

Chapter 7 - PROCEDURE DIVISION 31 May 2018

GnuCOBOL 3.0 rcl [03May2018] Programmer’s Guide 319

6. The optional "ON SIZE ERROR" and "NOT ON SIZE ERROR" clauses may be used to detect
and react to the failure or success, respectively, of an attempt to perform a calculation. In
this case, failure is defined as being an <identifier-2> with an insufficient number of digit
positions available to the left of any implied decimal point. See [ON SIZE ERROR + NOT
ON SIZE ERROR], page 237, for additional information.

31 May 2018 Chapter 7 - PROCEDURE DIVISION

320

GnuCOBOL 3.0 rcl [03May2018] Programmer’s Guide

7.8.27.2. MULTIPLY GIVING

[

MULTIPLY GIVING Syntax

MULTIPLY { literal-1 } BY { literal-2 } GIVING { identifier-3

”””””” { identifier-1 } ~~ { identifier-2 } ~~~~°~

[ROUNDED [MODE IS { AWAY-FROM-ZERO Fy11 ..
””””””” R { ~rmmm e }

-~
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R

el

-~
R
R
R
R
R
b3
b3
b3
R
R
B e e e e B S S S o

The "MULTIPLY GIVING" statement computes the product of two literals and/or data items and
saves that result in one or more other data items.

The reserved words "IS" and "ON" are optional and may be included, or not, at the dis-
cretion of the programmer. The presence or absence of these words has no effect upon the
program.

Both <identifier-1> and <identifier-2> must be numeric un-edited data items; <literal-1>
and <literal-2> must be numeric literals.

The product of <identifier-1> or <literal-1> and <identifier-2> or <literal-2> will be com-
puted and moved to each of the <identifier-3> data items, replacing their old contents.

Neither the value of <identifier-1> nor <identifier-2> will be altered, unless either appears
as an <identifier-3>.

The optional "ROUNDED" (see [ROUNDED], page 237) clause available to each <identifier-2>
will control how non-integer results will be saved.

The optional "ON SIZE ERROR" and "NOT ON SIZE ERROR" clauses may be used to detect
and react to the failure or success, respectively, of an attempt to perform a calculation. In

Chapter 7 - PROCEDURE DIVISION 31 May 2018

GnuCOBOL 3.0 rcl [03May2018] Programmer’s Guide 321

this case, failure is defined as being an <identifier-2> with an insufficient number of digit
positions available to the left of any implied decimal point. See [ON SIZE ERROR + NOT
ON SIZE ERROR], page 237, for additional information.

31 May 2018 Chapter 7 - PROCEDURE DIVISION

322

GnuCOBOL 3.0 rcl [03May2018] Programmer’s Guide

7.8.28. OPEN

[

OPEN Syntax j

OPEN { { INPUT } [SHARING WITH { ALL OTHER }] file-name-1
R St) { }

{ OUTPUT } { NO OTHER }

} { " }

{1-0 } { READ ONLY }

{ r Tmmm o

{ EXTEND }

[{ REVERSED +1 3}

{ e }

{ WITH { NO REWIND } }

{ 2 }}

{ { LOCK)

The "NO REWIND", and "REVERSED" clauses are syntactically recognized but are otherwise non-
functional.

The "OPEN" statement makes one or more files described in your program available for use.

1.

The reserved words "OTHER" and "WITH" are optional and may be included, or not, at the
discretion of the programmer. The presence or absence of these words has no effect upon
the program.

The "SHARING" and "WITH LOCK" clauses may not both be specified in the same "OPEN"
statement.

Any file defined in a GnuCOBOL program must be successfully opened before it or any of
it’s record descriptions may be referenced on:

A "CLOSE" statement (see [CLOSE], page 269)

A "DELETE" statement (see [DELETE], page 274)

A "READ" statement (see [READ], page 330)

A "REWRITE" statement (see [REWRITE], page 338)
A "START" statement (see [START], page 360)

An "UNLOCK" statement (see [UNLOCK], page 374)

A "WRITE" statement (see [WRITE], page 379)

Any attempt to open a file that is already open will fail with a file status of 41 (see [File
Status Codes], page 104).

Any open failure (including status 41) may be trapped using "DECLARATIVES"
(see [DECLARATIVES], page 230) or an error procedure established using the

Chapter 7 - PROCEDURE DIVISION 31 May 2018

GnuCOBOL 3.0 rcl [03May2018] Programmer’s Guide 323

"CBL_ERROR_PROC" built-in system subroutine (see [CBL_ERROR_-PROC], page 520)
built-in subroutine or even just checking the status field defined. It is up to the
programmer to check for bad statuses and respond accordingly such as issue a CLOSE
before dealing with the problem.

6. The "INPUT", "OUTPUT", "I-0" and "EXTEND" open modes inform GnuCOBOL of the man-
ner in which you wish to use the file, as follows:

"INPUT"
You may only read the existing contents of the file — only the "CLOSE", "READ",
"START" and "UNLOCK" statements will be allowed. This enforcement takes
place at execution time, not compilation time.

"OUTPUT"
You may only write new content (which will completely replace any previous
file contents) to the file — only the "CLOSE", "UNLOCK" and "WRITE" statements
will be allowed. This enforcement takes place at execution time, not compilation
time.

III_OII
You may perform any operation you wish against the file — all file I/O state-
ments will be allowed.

"EXTEND"

You may only write new content (which will be appended after the previously
existing file contents) to the file — only the "CLOSE", "UNLOCK" and "WRITE"
statements will be allowed. This enforcement takes place at execution time,
not compilation time. You cannot extend an empty file; this will not generate
a runtime error, but no output will appear in the file.

7. The "SHARING" clause informs the GnuCOBOL file runtime modules how you are willing
to co-exist with any other GnuCOBOL programs that may attempt to open the same file
after your program does. See [File Sharing], page 58, for an explanation of the "SHARING"
clause.

8. The "WITH LOCK" option will be functional only if your GnuCOBOL build can support
it. GnuCOBOL built for MinGW or native Windows will not, because the Unix "fentl()
primitive doesn’t exist in those environments. GnuCOBOL built for Cygwin or Unix will.

31 May 2018 Chapter 7 - PROCEDURE DIVISION

324

GnuCOBOL 3.0 rcl [03May2018] Programmer’s Guide

7.8.29. PERFORM
7.8.29.1. Procedural PERFORM

:

Procedural PERFORM Syntax

PERFORM procedure-name-1 [THRU|THROUGH procedure-name-2]

[{ [WITH TEST { BEFORE }] { VARYING-Clause Y]
{ o e } { UNTIL conditional-expression-1 } }
{ { AFTER } =~~~ }
<« T }
{ UNTIL EXIT|FOREVER }

S }
{ { literal-1 } TIMES }
{ { identifier-1 } ~~°~~ }

This format of the "PERFORM" statement is used to transfer control to one or more procedures,
which will return control back when complete. Execution of the procedure(s) can be done a
single time, multiple times, repeatedly until a condition becomes TRUE or forever (with some
way of breaking out of the control of the "PERFORM" or of halting program execution within the
procedure(s)).

The reserved word "WITH" is optional and may be included, or not, at the discretion of the
programmer. The presence or absence of this word has no effect upon the program.

The reserved words "THRU" and "THROUGH" are interchangeable.
The reserved word and phrase "FOREVER" and "UNTIL EXIT" are interchangeable.

Both <procedure-name-1> and <procedure-name-2> must be procedure division sections or
paragraphs defined in the same program as the "PERFORM" statement. If <procedure-name-
2> is specified, it must follow <procedure-name-1> in the program’s source code.

The ’perform scope’ is defined as being the statements within <procedure-name-1>, the
statements within <procedure-name-2> and all statements in all procedures defined between
them.

<literal-1> must be a numeric literal or a reference to a function that returns a numeric
value. The value must be an integer greater than zero.

<identifier-1> must be an elementary un-edited numeric data item with an integer value
greater than zero.

Without the "UNTIL", "UNTIL EXIT", "TIMES", <VARYING-Clause> (see [VARYING],
page 327) or "FOREVER" clauses, the code within the perform scope will be executed once,
after which control will return to the statement following the "PERFORM".

The "FOREVER" option will repeatedly execute the code within the perform scope with no
conditions defined for termination of the repetition — it will be up to the programmer
to include an "EXIT SECTION" statement (see [EXIT], page 292) or "EXIT PARAGRAPH"
statement within the procedure(s) being performed that will break out of the loop.

Chapter 7 - PROCEDURE DIVISION 31 May 2018

GnuCOBOL 3.0 rcl [03May2018] Programmer’s Guide 325

10.

11.

12.

13.

The "TIMES" option will repeat the execution of the code within the perform scope a fixed
number of times. When the "PERFORM" statement begins execution, an internal repeat
counter (not accessible to the programmer) will be set to the value of <literal-1> or the
value within <identifier-1>.

If the counter has a value greater than zero, the statement(s) within the "PERFORM" scope
will be executed, after which the counter will be decremented by 1 with each repetition.
Once that counter reaches zero, repetition will cease and control will fall into the next
statement following the "PERFORM".

If the <identifier-1> option was used, altering the value of that data item within the perform
scope will not affect the repetition count.

The "UNTIL <conditional-expression-1>" option will repeat the code within the per-
form scope until the specified conditional expression evaluates to a TRUE value.

The optional "WITH TEST" clause will control whether "UNTIL" testing occurs "BEFORE" the
statements within the perform scope are executed on each iteration (creating the possibility
— if <conditional-expression-1> is initially TRUE — that the statements within the perform
scope will never be executed) or "AFTER" (guaranteeing the statements within the perform
scope will be executed at least once).

The default, if this clause is absent, is "WITH TEST BEFORE".

This clause may not be coded when the "TIMES" clause is used.

The optional <VARYING-Clause> is a mechanism that creates an advanced
loop-management mechanism complete with one or more numeric data items being
automatically incremented (or decremented) on each loop iteration as well as the
termination control of an "UNTIL" clause. See [VARYING], page 327, for the details.

31 May 2018 Chapter 7 - PROCEDURE DIVISION

326 GnuCOBOL 3.0 rcl [03May2018] Programmer’s Guide

7.8.29.2. Inline PERFORM

[Inline PERFORM Syntax
PERFORM
[{ [WITH TEST { BEFORE }] { VARYING-Clause 1]
{ R } { UNTIL conditional-expression-1 } }
{ { AFTER } 777~ }
< T +
{ UNTIL EXIT|FOREVER }
L }
{ { literal-1 } TIMES }
{ { identifier-1 } =~~~ }

imperative-statement-1

[END-PERFORM]

This format of the "PERFORM" statement is identical in operation to the procedural "PERFORM",
except for the fact that the statement(s) comprising the perform scope (<imperative-statement-
1>) (see [Imperative Statement], page 638) are now specified in-line with the "PERFORM" code
rather than in procedures located elsewhere within the program.

Chapter 7 - PROCEDURE DIVISION 31 May 2018

GnuCOBOL 3.0 rcl [03May2018] Programmer’s Guide 327

7.8.29.3. VARYING

{ VARYING Syntax
VARYING identifier-2 FROM { literal-2 } [BY { literal-3 T 1]
””””””” ~~~~ { identifier-3 } ~~ { identifier-4 }
[UNTIL conditional-expression-1]
[AFTER identifier-5 FROM { literal-4 } [BY { literal-5 }1
””””” ~~~~ { identifier-6 } ~~ { identifier-7 }
[UNTIL conditional-expression-2] J...

The "VARYING" clause, available on both formats of the "PERFORM" statement, is a looping mech-
anism that allows for the specification of one or more numeric data items that will be initialized to
a programmer-specified value and automatically incremented by another programmer-specified

value after each loop iteration.

1. All identifiers used in a < VARYING-Clause> must be elementary, un-edited numeric data

items. All literals must be numeric literals.

2. The following points describe the sequence of events that take place as a result of the

"VARYING" portion of the clause:

A. When the "PERFORM" begins execution, the "FROM" value will be moved to <identifier>.

B. If the "PERFORM" specifies or implies "WITH TEST BEFORE", <conditional-expression-1>

will be evaluated and processing of the "PERFORM" will halt if the expression evaluates
to TRUE. If "WITH TEST BEFORE" was not specified or implied, or if the conditional
expression evaluated to FALSE, processing proceeds with step (C).

. The statements within the perform scope will be executed. If a "GO TO" executed within

the perform scope transfers control to a point outside the perform scope, processing of
the "PERFORM" will halt.

. When the statements within the perform scope terminate the loop iteration, by. . .

e .. .allowing the flow of execution to attempt to fall past the last statement in the
perform scope, or. . .

e ...executing an "EXIT PERFORM CYCLE" statement (see [EXIT], page 292), or. ..

e ...executing an "EXIT PARAGRAPH" statement or "EXIT SECTION" statement
when there is only one paragraph (or section) in the perform scope (this option
only applies to a procedural "PERFORM")

Control will return back to the "PERFORM", where — if "WITH TEST AFTER" was spec-
ified — <conditional-expression-1> will be evaluated and processing of the "PERFORM"
will halt if the expression evaluates to TRUE. If "WITH TEST AFTER" was not specified,
or if the conditional expression evaluated to FALSE, processing continues with the next
step.

31 May 2018 Chapter 7 - PROCEDURE DIVISION

328 GnuCOBOL 3.0 rcl [03May2018] Programmer’s Guide

E. The "BY" value, if any, will be added to <identifier-2>. If no "BY" is specified, it will
be treated as if "BY 1" had been specified.

F. Return to step (C).

3. Most < VARYING-Clause>s have no "AFTER" specified. Those that do, however, are es-
tablishing a loop-within-a-loop situation where the process described above in steps (A)
through (F) will take place from the "AFTER", and those six processing steps actually re-
place step (C) of the "VARYING". This "nesting" process can continue indefinitely, with
each additional "AFTER".

This is the point where an example should really help you see this at work. Observe the following
code which defines a two-dimensional (3 row by 4 column) table and a pair of numeric data items
to be used to subscript references to each element of the table:

01 PERFORM-DEMO.

05 PD-ROW OCCURS 3 TIMES.
10 PD-COL OCCURS 4 TIMES
15 PD PIC X(1).
01 PD-Col-No PIC 9 COMP.
01 PD-Row-No PIC 9 COMP.

Let’s say the 3x4 "grid" defined by the above structure has these values:

ABCD
EFGH
I JKL

This code will display "ABCDEFGHIJKL" on the console output window:

PERFORM WITH TEST AFTER
VARYING PD-Row-No FROM 1 BY 1 UNTIL PD-Row-No
AFTER PD-Col-No FROM 1 BY 1 UNTIL PD-Col-No
DISPLAY PD (PD-Row-No, PD-Col-No) WITH NO ADVANCING
END-PERFORM

o
S~ w

While this code will display "AEIBFJCGKDHL" on the console output window:

PERFORM WITH TEST AFTER
VARYING PD-Col-No FROM 1 BY 1 UNTIL PD-Col-No 4
AFTER PD-Row-No FROM 1 BY 1 UNTIL PD-Row-No = 3
DISPLAY PD (PD-Row-No, PD-Col-No) WITH NO ADVANCING
END-PERFORM

While we're looking at sample code, this code displays "ABCEFG":
PERFORM

VARYING PD-Row-No FROM 1 BY 1 UNTIL PD-Row-No 3
AFTER PD-Col-No FROM 1 BY 1 UNTIL PD-Col-No = 4
DISPLAY PD (PD-Row-No, PD-Col-No) WITH NO ADVANCING
END-PERFORM

By removing the "WITH TEST" clause, the statement is now assuming "WITH TEST BEFORE".

Chapter 7 - PROCEDURE DIVISION 31 May 2018

GnuCOBOL 3.0 rcl [03May2018] Programmer’s Guide 329

Since testing now happens before the "DISPLAY" statement gets executed, when PD-Row-No is
3 and PD-Col-No is 4 the "DISPLAY" statement won’t be executed.

Most COBOL programmers, when using "WITH TEST BEFORE" explicitly or implicitly have de-
veloped the habit of using ">" rather than "=" on "UNTIL" clauses. This would make the sample
code:

PERFORM
VARYING PD-Row-No FROM 1 BY 1 UNTIL PD-Row-No > 3
AFTER PD-Col-No FROM 1 BY 1 UNTIL PD-Col-No > 4
DISPLAY PD (PD-Row-No, PD-Col-No) WITH NO ADVANCING
END-PERFORM

With this change, "ABCDEFGHIJKL" is once again displayed.

31 May 2018 Chapter 7 - PROCEDURE DIVISION

330

GnuCOBOL 3.0 rcl [03May2018] Programmer’s Guide

7.8.30. READ
7.8.30.1. Sequential READ

{

Sequential READ Syntax }

[

READ file-name-1 [{ NEXT|PREVIOUS }] RECORD [INTO identifier-1 1]

o [s } R
[{ IGNORING LOCK 3]
{ "~ v }
{ WITH [NO] LOCK }
{ R &
{ WITH KEPT LOCK }
{ ~m o }
{ WITH IGNORE LOCK }
{ ~mrmm o }
{ WITH WAIT }

[AT END imperative-statement-1]

[NOT AT END imperative-statement-2]

END-READ]

This form of the "READ" statement retrieves the next (or previous) record from a file.

1.

The reserved words "AT", "RECORD" and "WITH" are optional and may be included, or not,
at the discretion of the programmer. The presence or absence of these words has no effect
upon the program.

The <file-name-1> file must have been defined via an "FD" (see [File/Sort-Description],
page 121), not an "SD".

The <file-name-1> file must currently be open for "INPUT" (see [File OPEN Modes],
page 323) or "I-0".

If <file-name-1> is an "ORGANIZATION RELATIVE" (see [ORGANIZATION RELATIVE],
page 110) or "ORGANIZATION INDEXED" (see [ORGANIZATION INDEXED], page 112) file
with an "ACCESS MODE RANDOM", this statement cannot be used.

If <file-name-1> was specified as "ACCESS MODE SEQUENTIAL", this is the only format of
the "READ" statement that is available.

If <file-name-1> is an "ORGANIZATION RELATIVE" (see [ORGANIZATION RELATIVE],
page 110) or "ORGANIZATION INDEXED" (see [ORGANIZATION INDEXED], page 112) file
with "ACCESS MODE DYNAMIC", this statement as well as a random "READ" (see [Random
READ], page 332) may be used.

The keywords "NEXT" and "PREVIOUS" specify what direction of "travel" the reading process
will take through the file. If neither is specified, "NEXT" is assumed.

Chapter 7 - PROCEDURE DIVISION 31 May 2018

GnuCOBOL 3.0 rcl [03May2018] Programmer’s Guide 331

10.

11.

12.

13.

14.

15.

The "PREVIOUS" option is available only for "ORGANIZATION INDEXED" files.

When reading any sequential (any organization) or relative file, the "next" direction refers
to the physical sequence of records in the file. When reading an indexed file, the "next"
and "previous" directions refer to the sequence of primary or alternate record key values in
the file’s records, regardless of where the records physically occur within the file.

The minimal statement "READ <file-name-1>" is perfectly legal according to both READ
formats. For that reason, when "ACCESS MODE DYNAMIC" has been specified and you want to
tell the GnuCOBOL compiler that this minimal statement should be treated as a sequential
"READ", you must add either "NEXT" or "PREVIOUS" to the statement (otherwise it will be
treated as a random "READ").

A successful sequential READ will retrieve the next available record from <file-name-1>,
in either a "next" or "previous" direction from the most-recently-read record, depending
upon the use of the "NEXT" or "PREVIOUS" option. The newly-retrieved record data will
be saved into the 01-level record structure(s) that immediately follow the file’s "FD". If the
optional "INTQ" clause is present, a copy of the just-retrieved record will be automatically
moved to <identifier-1>.

When an "ORGANIZATION RELATIVE" file has been successfully read, the file’s "RELATIVE
KEY" (see [ORGANIZATION RELATIVE], page 110) field will be automatically populated
with the relative record number (ordinal occurrence number) of the record in the file.

The optional "LOCK" options may be used to manually control access to the retrieved record
by other programs while this program is running. See [Record Locking], page 60, to review
the various record locking behaviours.

The optional "AT END" clause, if coded, is used to detect and react to the failure of an
attempt to retrieve another record from the file due to an end-of-file (i.e. no more records)
condition.

The optional "NOT AT END" clause, if coded, will check checking for a file status value of
00. See [File Status Codes|, page 104, for additional information.

31 May 2018 Chapter 7 - PROCEDURE DIVISION

332

GnuCOBOL 3.0 rcl [03May2018] Programmer’s Guide

7.8.30.2. Random READ

:

Random READ Syntax }

READ file-name-1 RECORD [INTO identifier-1]

[{ IGNORING LOCK }]
{ ~ommmmm oo X
{ WITH [NO] LOCK }
{ Tttt
{ WITH KEPT LOCK }
{ o X
{ WITH IGNORE LOCK }
{ "o b
{ WITH WAIT ¥

[KEY IS identifier-2]

[INVALID KEY imperative-statement-1]

This form of the "READ" statement retrieves an arbitrary record from an "ORGANIZATION
RELATIVE" (see [ORGANIZATION RELATIVE], page 110) or "ORGANIZATION INDEXED" (see
[ORGANIZATION INDEXED], page 112) file.

1.

The reserved words "IS", "KEY" (on the "INVALID" and "NOT INVALID" clauses), "RECORD"
and "WITH" are optional and may be included, or not, at the discretion of the programmer.
The presence or absence of these words has no effect upon the program.

The <file-name-1> file must have been defined via an "FD" (see [File/Sort-Description],
page 121), not an "SD".

The <file-name-1> file must currently be open for "INPUT" (see [File OPEN Modes],
page 323) or "I-0".

If the "ACCESS MODE" of <file-name-1> is "SEQUENTIAL", or the "ORGANIZATION" of the file
is any form of sequential, this format of the "READ" statement cannot be used.

If the "ACCESS MODE" of <file-name-1> is "RANDOM", this is the only format of the "READ"
statement that is available.

If <file-name-1> is an "ORGANIZATION RELATIVE" (See [ORGANIZATION RELATIVE],
page 110) or "ORGANIZATION INDEXED" (see [ORGANIZATION INDEXED], page 112) file
with "ACCESS MODE DYNAMIC", this statement as well as a sequential "READ" (see [Sequential
READ], page 330) may be used.

The minimal statement "READ <file-name-1>" is perfectly legal according to both READ
formats. For that reason, when "ACCESS MODE DYNAMIC" has been specified and you want

Chapter 7 - PROCEDURE DIVISION 31 May 2018

GnuCOBOL 3.0 rcl [03May2018] Programmer’s Guide 333

10.

11.

12.

13.

to tell the GnuCOBOL compiler that this minimal statement should be treated as a random
"READ", you must omit the "NEXT" or "PREVIQUS" available to the sequential format of the
"READ" statement to ensure the statement will be treated as a random "READ".

The optional "KEY" clause tells the compiler how a record is to be located in the file. If the
clause is absent, and. . .

A. .. .if the file is an "ORGANIZATION RELATIVE" file, the contents of the field declared as
the file’s "RELATIVE KEY" will be used to identify a record, otherwise. . .

B. ...if the file is an "ORGANIZATION INDEXED" file, the contents of the field declared as
the file’s "RECORD KEY" will be used to identify a record.

But, if the "KEY" clause is specified, and. . .

A. .. .if the file is an "ORGANIZATION RELATIVE" file, the contents of <identifier-2> will
be used as the relative record number of the record to be accessed — <identifier-2>
need not be the "RELATIVE KEY" (see [ORGANIZATION RELATIVE], page 110) field
of the file (although it could be if you wish).

B. ...if the file is an "ORGANIZATION INDEXED" file, <identifier-2> must be the "RECORD
KEY" (see [ORGANIZATION INDEXED], page 112) or one of the file’s "ALTERNATE
RECORD KEY" fields (if any) — the current contents of that field will identify the record
to be accessed. If an alternate record key is used, and that key allows duplicate values,
the record accessed will be the first one having that key value.

Once read from the file, the newly-retrieved record data will be saved into the 01-level
record structure(s) that immediately follow the file’s "FD". If the optional "INTQ" clause is
present, a copy of the just-retrieved record will be automatically moved to <identifier-1>.

When an "ORGANIZATION RELATIVE" file has been successfully read, the file’s "RELATIVE
KEY" (see [ORGANIZATION RELATIVE], page 110) field will be automatically populated
with the relative record number (ordinal occurrence number) of the record in the file.

The optional "LOCK" options may be used to manually control access to the retrieved record
by other programs while this program is running. See [Record Locking], page 60, to review
the various record locking behaviours.

The optional "INVALID KEY" and "NOT INVALID KEY" clauses may be used to detect and
react to the failure or success, respectively, by detecting non-zero (typically 23 = key not
found = record not found) and 00 file status codes, respectively. See [File Status Codes],
page 104, for additional information.

31 May 2018 Chapter 7 - PROCEDURE DIVISION

334 GnuCOBOL 3.0 rcl [03May2018] Programmer’s Guide

7.8.31. READY TRACE

{ READY TRACE Syntax

READY TRACE

The "READY TRACE" statement turns procedure or procedure-and-statement tracing on.

1. In order for this statement to be functional, tracing code must have been generated into the
compiled program using either the "-ftrace" switch (procedures only) or "-ftraceall"
switch (procedures and statements).

2. Tracing may be turned off at any point by executing the "RESET TRACE" statement (see
[RESET TRACE], page 336).

3. The "COB_SET_TRACE" run-time environment variable (see [Run Time Environment Vari-
ables|, page 596) provides another way to control tracing. If this environment variable is
set to a value of "Y" prior to the start of program execution, tracing starts at the point the
program begins execution, as if "READY TRACE" were the first executed statement.

Chapter 7 - PROCEDURE DIVISION 31 May 2018

GnuCOBOL 3.0 rcl [03May2018] Programmer’s Guide 335

7.8.32. RELEASE

{ RELEASE Syntax

RELEASE record-name-1 [FROM { literal-1 3]
””””””” “*~~ { identifier-1 }

The "RELEASE" statement adds a new record to a sort work file.

1. This statement is valid only within the "INPUT PROCEDURE" of a file-based "SORT" statement
(see [File-Based SORT], page 354).

2. The specified <record-name-1> must be a record defined to the sort description ("SD" (see
[File/Sort-Description], page 121)) of the sort work file being processed by the current sort.

3. The optional "FROM" clause will cause <literal-1> or <identifier-1> to be automatically
moved into <record-name-1> prior to writing <record-name-1>’s contents to the <file-name-
1>. If this clause is not specified, it is the programmer’s responsibility to populate <record-
name-1> with the desired data prior to executing the "RELEASE".

31 May 2018 Chapter 7 - PROCEDURE DIVISION

336 GnuCOBOL 3.0 rcl [03May2018] Programmer’s Guide

7.8.33. RESET TRACE

{ RESET TRACE Syntax

RESET TRACE

The "RESET TRACE" statement turns procedure or procedure-and-statement tracing off.

1. By default, procedure and procedure-and-statement tracing is off as programs begin exe-
cution. The "READY TRACE" statement (see [READY TRACE], page 334) can be used to
turn tracing on.

2. In order for this statement to be functional, tracing code must have been generated into the
compiled program using either the "-ftrace" switch (procedures only) or "-ftraceall"
switch (procedures and statements).

3. The "COB_SET_TRACE" run-time environment variable (see [Run Time Environment Vari-
ables|, page 596) provides another way to control tracing. If this environment variable is
set to a value of "Y" prior to the start of program execution, tracing started at the point
the program begins execution, as if "READY TRACE" were the first executed statement. The
"RESET TRACE" statement, if executed, will then turn off tracing.

Chapter 7 - PROCEDURE DIVISION 31 May 2018

GnuCOBOL 3.0 rcl [03May2018] Programmer’s Guide 337

7.8.34. RETURN

[

RETURN Syntax j

RETURN sort-file—-name-1 RECORD

[INTO identifier-1]

AT END imperative-statement-1

[NOT AT END imperative-statement-2]

The "RETURN" statement reads a record from a sort- or merge work file.

1.

The reserved words "AT" and "RECORD" are optional and may be included, or not, at the
discretion of the programmer. The presence or absence of these words has no effect upon
the program.

The "RETURN" statement is valid only within the "OUTPUT PROCEDURE" of a file-based
"SORT" (see [File-Based SORT], page 354) or a "MERGE" statement (see MERGE], page 313)
statement.

The <sort-file-name-1> file must be a sort- or merge work file defined with a "SD" (see
[File/Sort-Description], page 121), not an "FD".

A successful "RETURN" will retrieve the next available record from <sort-file-name-1>. The
newly-retrieved record data will be saved into the 01-level record structure(s) that immedi-
ately follow the file’s SD. If the optional "INTO" clause is present, a copy of the just-retrieved
record will be automatically moved to <identifier-1>.

The mandatory "AT END" clause is used to detect and react to the failure of an attempt to
retrieve another record from the file due to an end-of-file (i.e. no more records) condition.

The optional "NOT AT END" clause, if coded, will check checking for a file status value of
00. See [File Status Codes|, page 104, for additional information.

31 May 2018 Chapter 7 - PROCEDURE DIVISION

338

GnuCOBOL 3.0 rcl [03May2018] Programmer’s Guide

7.8.35. REWRITE

[

REWRITE Syntax

REWRITE record-name-1

[FROM { literal-1 } 1
~~~~ { identifier-1 }

[ WITH [ NO ] LOCK ]

[ INVALID KEY imperative-statement-1 ]

[ NOT INVALID KEY imperative-statement-2 ]

The "REWRITE" statement replaces a logical record on a disk file.

1.

The reserved words "KEY" and "WITH" are optional and may be included, or not, at the
discretion of the programmer. The presence or absence of these words has no effect upon
the program.

The <record-name-1> specified on the statement must be defined as an 0l-level record
subordinate to the File Description ("FD" (see [File/Sort-Description], page 121)) of a file
that is currently open for "I-0" (see [File OPEN Modes|, page 323).

The optional "FROM" clause will cause <literal-1> or <identifier-1> to be automatically
moved into <record-name-1> prior to writing <record-name-1>’s contents to the <file-name-
1>. If this clause is not specified, it is the programmer’s responsibility to populate <record-
name-1> with the desired data prior to executing the "REWRITE".

This statement may not be used with "ORGANIZATION LINE SEQUENTIAL" (see
[ORGANIZATION LINE SEQUENTIAL]|, page 108) files.

Rewriting a record does not cause the contents of the file to be physically updated until the
next block of the file is read, a "COMMIT" (see [COMMIT], page 270) or "UNLOCK" statement
(see [UNLOCK], page 374) is issued or that file is closed.

If the file has "ORGANIZATION SEQUENTIAL" (see [ORGANIZATION SEQUENTIAL],
page 106):

A. The record to be rewritten will be the one retrieved by the most-recently executed
"READ" (see [READ], page 330) of the file.

B. If the "FD" of the file contains the "RECORD CONTAINS" or "RECORD IS VARYING"
clause, and that clause allows the record size to vary, the size of <record-name-1>
cannot be altered.

If the file has "ORGANIZATION RELATIVE" (see [ORGANIZATION RELATIVE], page 110)

or "ORGANIZATION INDEXED" (see [ORGANIZATION INDEXED], page 112):

A. If the file has "ACCESS MODE SEQUENTIAL", the record to be rewritten will be the one

Chapter 7 - PROCEDURE DIVISION 31 May 2018



GnuCOBOL 3.0 rcl [03May2018] Programmer’s Guide 339

retrieved by the most-recently executed "READ" of the file. If the file has "ACCESS MODE
RANDOM" or "ACCESS MODE DYNAMIC", no "READ" is required before a record may be
rewritten — the "RELATIVE KEY" or "RECORD KEY" definition for the file, respectively,
will specify the record to be updated.

B. If the "FD" of the file contains the "RECORD CONTAINS" or "RECORD IS VARYING"
clause, and that clause allows the record size to vary, the size can be altered.
8. The optional "LOCK" options may be used to manually control access to the re-written
record by other programs while this program is running. See [Record Locking], page 60, to
review the various record locking behaviours.

9. The optional "INVALID KEY" and "NOT INVALID KEY" clauses may be used to detect and
react to the failure or success, respectively, by detecting non-zero (typically 23 = key not
found = record not found) and 00 file status codes, respectively. See [File Status Codes],
page 104, for additional information.

31 May 2018 Chapter 7 - PROCEDURE DIVISION



340 GnuCOBOL 3.0 rcl [03May2018] Programmer’s Guide

7.8.36. ROLLBACK

{ ROLLBACK Syntax

ROLLBACK

The "ROLLBACK" statement has the same effect as if an "UNLOCK" statement (see [UNLOCK],
page 374) were executed against every open file in the program.

1. All locks currently being held for all open files will be released.

2. See [Record Locking], page 60, to review the various record locking behaviours.

Chapter 7 - PROCEDURE DIVISION 31 May 2018



GnuCOBOL 3.0 rcl [03May2018] Programmer’s Guide 341

7.8.37. SEARCH

[

SEARCH Syntax

SEARCH table—-name-1

[ AT END imperative-statement-1 ]

{ WHEN conditional-expression-1 imperative-statement-2 }...

[ END-SEARCH ]

The "SEARCH" statement is used to sequentially search a table, stopping either once a specific
value is located within the table or when the table has been completely searched.

1.

The reserved word "AT" is optional and may be included, or not, at the discretion of the
programmer. The presence or absence of this word has no effect upon the program.

The searching process will be controlled through a ’Search Index’ — a data item with
a "USAGE" (see [USAGE], page 210) of "INDEX". The search index is either the <indez-
name-1> identifier specified on the "VARYING" clause or — if no "VARYING" is specified
— the "USAGE INDEX" data item implicitly created by an "INDEXED BY" (see [OCCURS],
page 182) clause in the table’s definition.

At the time the "SEARCH" statement is executed, the current value of the search index data
item will define the starting position in the table where the searching process will begin.
Typically, one initializes that index to a value of 1 before starting the "SEARCH" via "SET
<search-index> TO 1".

Each of the <conditional-expression-n>s on the "WHEN" clause(s) should involve a data ele-
ment within the table, subscripted using the search index.

The searching process is as follows:

A. Each <conditional-expression-n> will be evaluated, in turn, until either one evaluates
to a value of TRUE or all have evaluated to FALSE.

B. The <imperative-statement-n> (see [Imperative Statement], page 638) specified on the
"WHEN" clause whose <conditional-expression-n> evaluated to TRUE will be executed;
after that, the search will be considered complete and control will fall into the first
executable statement following the "SEARCH".

C. If all <conditional-expression-n>s evaluated to FALSE:

e The search index will be incremented by 1

e If the search index now has a value greater than the number of entries in the table,
the search is considered to have failed and the <imperative-statement-1> on the
optional "AT END" clause, if any, will be executed. After that, control will fall into
the first executable statement following the "SEARCH".

31 May 2018 Chapter 7 - PROCEDURE DIVISION



342 GnuCOBOL 3.0 rcl [03May2018] Programmer’s Guide

e If the search index now has a value less than or equal to the number of entries in
the table, search processing returns back to step (A).

Chapter 7 - PROCEDURE DIVISION 31 May 2018



GnuCOBOL 3.0 rcl [03May2018] Programmer’s Guide 343

7.8.38. SEARCH ALL

{ SEARCH ALL Syntax

SEARCH ALL table-name-1

[ AT END imperative-statement-1 ]

WHEN conditional-expression-1 imperative-statement-2

[ END-SEARCH 1]

The "SEARCH ALL" statement performs a binary, or half-interval, search against a sorted table.
This is generally significantly faster than performing a sequential "SEARCH" of a table, especially
if the table contains a large number of entries.

1. The reserved word "AT" is optional and may be included, or not, at the discretion of the
programmer. The presence or absence of this word has no effect upon the program.

2. To be eligible for searching via "SEARCH ALL":
A. The "OCCURS" clause of <table-name-1> must contain the following elements:

e An "INDEXED BY" entry to define an implicit search index data item with a
"USAGE" (see [USAGE], page 210) of "INDEX".

e An "ASCENDING KEY" or "DESCENDING KEY" clause to specify the field within the
table by which all entries in the table are sorted.

B. Just because the table has one or more "KEY" clauses doesn’t mean the data is actually
in that sequence in the table — the actual sequence of the data must agree with the
KEY clause(s)! A table-based "SORT" (see [Table SORT], page 358) can prove very
useful in this regard.

C. No two records in the table may have the same "KEY" field values. If the table has mul-
tiple "KEY" definitions, then no two records in the table may have the same combination
of "KEY" field values.

3. If rule (A) is violated, the compiler will reject the "SEARCH ALL". If rules (B) and/or (C)
are violated, there will be no message issued by the compiler, but the run-time results of a
"SEARCH ALL" against the table will probably be incorrect.

4. The <conditional-expression-1> should involve the "KEY" field(s), using the search index
(the table’s "INDEXED BY" index name) as a subscript.

5. The function of the single, mandatory, "WHEN" clause is to compare the key field(s) of the
table, as indexed by the search index data item, against whatever literal and/or identifier
values you are comparing the key field(s) to in the <conditional-expression-1> in order to
locate the desired entry in the table. The search index will be automatically varied in a
manner designed to require the minimum number of tests.

6. The internal processing of the SEARCH ALL statement begins by setting internal "first"

31 May 2018 Chapter 7 - PROCEDURE DIVISION



344 GnuCOBOL 3.0 rcl [03May2018] Programmer’s Guide

and "last" pointers to the 1st and last entry locations of the table. Processing then proceeds
as follows:

A. The entry half-way between "first" and "last" is identified. We’ll call this the "current"
entry, and will set its table entry location into <indez-name-1>.

B. The <conditional-expression-1> is evaluated. This comparison of the key(s) against the
target literal/identifier values will have one of three possible outcomes:

e If the key(s) and value(s) match, <imperative-statement-2> (see [Imperative State-
ment|, page 638) is executed, after which control falls through into the next state-
ment following the "SEARCH ALL".

e If the key(s) are LESS THAN the value(s), then the table entry being searched
for c